On sums of multiplicative functions over numbers all of whose prime
Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 423-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of complex integration is used to derive asymptotic formulae for sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions. Generally, the principal term in such a formula takes the form of a sum with an increasing number of terms. However, under certain condition on the parameters of the problem, it becomes a finite sum.
@article{IM2_2005_69_2_a5,
     author = {M. E. Changa},
     title = {On sums of multiplicative functions over numbers all of whose prime},
     journal = {Izvestiya. Mathematics },
     pages = {423--438},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a5/}
}
TY  - JOUR
AU  - M. E. Changa
TI  - On sums of multiplicative functions over numbers all of whose prime
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 423
EP  - 438
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a5/
LA  - en
ID  - IM2_2005_69_2_a5
ER  - 
%0 Journal Article
%A M. E. Changa
%T On sums of multiplicative functions over numbers all of whose prime
%J Izvestiya. Mathematics 
%D 2005
%P 423-438
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a5/
%G en
%F IM2_2005_69_2_a5
M. E. Changa. On sums of multiplicative functions over numbers all of whose prime. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 423-438. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a5/

[1] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, V. 2, Teubner, Leipzig, 1909

[2] Changa M. E., “O chislakh, vse prostye deliteli kotorykh lezhat v spetsialnykh promezhutkakh”, Izv. RAN. Ser. matem., 67:4 (2003), 213–224 | MR | Zbl

[3] Levin B. V., Fainleib A. S., “Primenenie nekotorykh integralnykh uravnenii k voprosam teorii chisel”, UMN, 22:3 (1967), 119–198 | MR

[4] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[5] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953

[6] Karatsuba A. A., “Ravnomernaya otsenka ostatochnogo chlena v probleme delitelei Dirikhle”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 475–483 | Zbl

[7] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR

[8] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl