On holomorphic continuation of functions defined on a~pencil of~boundary complex lines
Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 345-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study domains of holomorphy of functions having thin singularities along a fixed direction. We prove a boundary analogue of Hartogs' theorem on the holomorphic continuation of functions of several variables that admit holomorphic continuation in one variable.
@article{IM2_2005_69_2_a3,
     author = {S. A. Imomkulov},
     title = {On holomorphic continuation of functions defined on a~pencil of~boundary complex lines},
     journal = {Izvestiya. Mathematics },
     pages = {345--363},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/}
}
TY  - JOUR
AU  - S. A. Imomkulov
TI  - On holomorphic continuation of functions defined on a~pencil of~boundary complex lines
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 345
EP  - 363
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/
LA  - en
ID  - IM2_2005_69_2_a3
ER  - 
%0 Journal Article
%A S. A. Imomkulov
%T On holomorphic continuation of functions defined on a~pencil of~boundary complex lines
%J Izvestiya. Mathematics 
%D 2005
%P 345-363
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/
%G en
%F IM2_2005_69_2_a3
S. A. Imomkulov. On holomorphic continuation of functions defined on a~pencil of~boundary complex lines. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 345-363. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/

[1] Hartogs F., “Zur Theorie der analytichen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben”, Math. Ann., 62 (1906), 1–88 | DOI | MR | Zbl

[2] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1985 | MR

[3] Rothstein W., “Ein neuer Beweis des Hartogsshen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen”, Math. Z., 53 (1950), 84–95 | DOI | MR | Zbl

[4] Kazaryan M. V., “O golomorfnom prodolzhenii funktsii so spetsialnymi osobennostyami v $\mathbb C^{n}$”, DAN ArmSSR, 76:1 (1983), 13–17 | MR | Zbl

[5] Kazaryan M. V., “Meromorfnoe prodolzheniya po gruppam peremennykh”, Matem. sb., 125 (167):3 (1984), 384–397 | MR

[6] Sadullaev A. S., Chirka E. M., “O prodolzhenii funktsii s polyarnymi osobennostyami”, Matem. sb., 132 (174):3 (1987), 383–390 | MR | Zbl

[7] Tuichiev T. T., “Prodolzhenie funktsii vdol fiksirovannogo napravleniya”, Sib. matem. zhurn., 29:3 (1988), 142–147 | MR

[8] Sadullaev A. S., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl

[9] Sadullaev A. S., “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Matem. sb., 119(161):1(9) (1982), 96–118 | MR | Zbl

[10] Sadullaev A. S., “Kriterii bystroi ratsionalnoi approksimatsii v $\mathbf C^{n}$”, Matem. sb., 125(167):2(10) (1984), 269–279 | MR | Zbl

[11] Bedford E., Taylor B. A., “A new capacity for plurisubharmonic functions”, Acta. Math., 149 (1982), 1–40 | DOI | MR | Zbl

[12] Gonchar A. A., “Lokalnoe uslovie odnoznachnosti analiticheskikh funktsii neskolkikh peremennykh”, Matem. sb., 93:2 (1974), 296–313 | Zbl

[13] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Itogi nauki i tekhn. Sovremennye problemy matematiki, 4, VINITI AN SSSR, M., 1975, 13–142

[14] Oka K., “Notes sur les familles des fonctions analytiques multiform ets”, J. Sci. Hiroshima Univ. Ser. A, 4 (1934), 93–98 | Zbl

[15] Slodkowski Z., “On subharmonicily of the spectrum”, Proc. Amer. Math. Soc., 81 (1981), 143–249 | DOI | MR

[16] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[17] Privalov I. I., Kuznetsov P. I., “Granichnye zadachi i razlichnye klassy garmonicheskikh i subgarmonicheskikh funktsii, opredelennykh v proizvolnykh oblastyakh”, Matem. sb., 6 (48):3 (1939), 345–375

[18] Kheiman U., Kennedi P. I., Subgarmonicheskie funktsii, Mir, M., 1980

[19] Pinchuk S. I., “Granichnaya teorema edinstvennosti dlya golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Matem. zametki, 15:2 (1974), 205–212 | Zbl

[20] Sadullaev A. S., “Granichnaya teorema edinstvennosti v $\mathbb C^{n}$”, Matem. sb., 101 (143):4 (1976), 568–583 | MR | Zbl

[21] Khurumov Yu. V., “K teoreme Lindelëfa v $\mathbb C^{n}$”, DAN SSSR, 273:6 (1983), 1325–1328 | MR | Zbl

[22] Slodkowski Z., “Analytic Set-Valued Functions and Spectra”, Math. Ann., 256 (1981), 363–386 | DOI | MR | Zbl

[23] Vodopyanov S. K., Goldshtein V. M., Reshetnyak Yu. G., “O geometricheskikh svoistvakh funktsii s pervymi obobschennymi proizvodnymi”, UMN, 34:1 (205) (1979), 17–65 | MR

[24] Khurumov Yu. V., Suschestvovanie predelnykh znachenii i granichnaya teorema edinstvennosti dlya funktsii, meromorfnykh v kline v $\mathbb C^n$, Preprint No 20M, In-t fiziki im. L. V. Kirenskogo, Krasnoyarsk, 1982