Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_2_a3, author = {S. A. Imomkulov}, title = {On holomorphic continuation of functions defined on a~pencil of~boundary complex lines}, journal = {Izvestiya. Mathematics }, pages = {345--363}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/} }
S. A. Imomkulov. On holomorphic continuation of functions defined on a~pencil of~boundary complex lines. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 345-363. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/
[1] Hartogs F., “Zur Theorie der analytichen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben”, Math. Ann., 62 (1906), 1–88 | DOI | MR | Zbl
[2] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1985 | MR
[3] Rothstein W., “Ein neuer Beweis des Hartogsshen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen”, Math. Z., 53 (1950), 84–95 | DOI | MR | Zbl
[4] Kazaryan M. V., “O golomorfnom prodolzhenii funktsii so spetsialnymi osobennostyami v $\mathbb C^{n}$”, DAN ArmSSR, 76:1 (1983), 13–17 | MR | Zbl
[5] Kazaryan M. V., “Meromorfnoe prodolzheniya po gruppam peremennykh”, Matem. sb., 125 (167):3 (1984), 384–397 | MR
[6] Sadullaev A. S., Chirka E. M., “O prodolzhenii funktsii s polyarnymi osobennostyami”, Matem. sb., 132 (174):3 (1987), 383–390 | MR | Zbl
[7] Tuichiev T. T., “Prodolzhenie funktsii vdol fiksirovannogo napravleniya”, Sib. matem. zhurn., 29:3 (1988), 142–147 | MR
[8] Sadullaev A. S., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl
[9] Sadullaev A. S., “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Matem. sb., 119(161):1(9) (1982), 96–118 | MR | Zbl
[10] Sadullaev A. S., “Kriterii bystroi ratsionalnoi approksimatsii v $\mathbf C^{n}$”, Matem. sb., 125(167):2(10) (1984), 269–279 | MR | Zbl
[11] Bedford E., Taylor B. A., “A new capacity for plurisubharmonic functions”, Acta. Math., 149 (1982), 1–40 | DOI | MR | Zbl
[12] Gonchar A. A., “Lokalnoe uslovie odnoznachnosti analiticheskikh funktsii neskolkikh peremennykh”, Matem. sb., 93:2 (1974), 296–313 | Zbl
[13] Khenkin G. M., Chirka E. M., “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Itogi nauki i tekhn. Sovremennye problemy matematiki, 4, VINITI AN SSSR, M., 1975, 13–142
[14] Oka K., “Notes sur les familles des fonctions analytiques multiform ets”, J. Sci. Hiroshima Univ. Ser. A, 4 (1934), 93–98 | Zbl
[15] Slodkowski Z., “On subharmonicily of the spectrum”, Proc. Amer. Math. Soc., 81 (1981), 143–249 | DOI | MR
[16] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[17] Privalov I. I., Kuznetsov P. I., “Granichnye zadachi i razlichnye klassy garmonicheskikh i subgarmonicheskikh funktsii, opredelennykh v proizvolnykh oblastyakh”, Matem. sb., 6 (48):3 (1939), 345–375
[18] Kheiman U., Kennedi P. I., Subgarmonicheskie funktsii, Mir, M., 1980
[19] Pinchuk S. I., “Granichnaya teorema edinstvennosti dlya golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Matem. zametki, 15:2 (1974), 205–212 | Zbl
[20] Sadullaev A. S., “Granichnaya teorema edinstvennosti v $\mathbb C^{n}$”, Matem. sb., 101 (143):4 (1976), 568–583 | MR | Zbl
[21] Khurumov Yu. V., “K teoreme Lindelëfa v $\mathbb C^{n}$”, DAN SSSR, 273:6 (1983), 1325–1328 | MR | Zbl
[22] Slodkowski Z., “Analytic Set-Valued Functions and Spectra”, Math. Ann., 256 (1981), 363–386 | DOI | MR | Zbl
[23] Vodopyanov S. K., Goldshtein V. M., Reshetnyak Yu. G., “O geometricheskikh svoistvakh funktsii s pervymi obobschennymi proizvodnymi”, UMN, 34:1 (205) (1979), 17–65 | MR
[24] Khurumov Yu. V., Suschestvovanie predelnykh znachenii i granichnaya teorema edinstvennosti dlya funktsii, meromorfnykh v kline v $\mathbb C^n$, Preprint No 20M, In-t fiziki im. L. V. Kirenskogo, Krasnoyarsk, 1982