On holomorphic continuation of functions defined on a~pencil of~boundary complex lines
Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 345-363

Voir la notice de l'article provenant de la source Math-Net.Ru

We study domains of holomorphy of functions having thin singularities along a fixed direction. We prove a boundary analogue of Hartogs' theorem on the holomorphic continuation of functions of several variables that admit holomorphic continuation in one variable.
@article{IM2_2005_69_2_a3,
     author = {S. A. Imomkulov},
     title = {On holomorphic continuation of functions defined on a~pencil of~boundary complex lines},
     journal = {Izvestiya. Mathematics },
     pages = {345--363},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/}
}
TY  - JOUR
AU  - S. A. Imomkulov
TI  - On holomorphic continuation of functions defined on a~pencil of~boundary complex lines
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 345
EP  - 363
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/
LA  - en
ID  - IM2_2005_69_2_a3
ER  - 
%0 Journal Article
%A S. A. Imomkulov
%T On holomorphic continuation of functions defined on a~pencil of~boundary complex lines
%J Izvestiya. Mathematics 
%D 2005
%P 345-363
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/
%G en
%F IM2_2005_69_2_a3
S. A. Imomkulov. On holomorphic continuation of functions defined on a~pencil of~boundary complex lines. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 345-363. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a3/