Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_2_a0, author = {S. A. Albeverio and A. Yu. Khrennikov and V. M. Shelkovich}, title = {Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions}, journal = {Izvestiya. Mathematics }, pages = {221--263}, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a0/} }
TY - JOUR AU - S. A. Albeverio AU - A. Yu. Khrennikov AU - V. M. Shelkovich TI - Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions JO - Izvestiya. Mathematics PY - 2005 SP - 221 EP - 263 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a0/ LA - en ID - IM2_2005_69_2_a0 ER -
%0 Journal Article %A S. A. Albeverio %A A. Yu. Khrennikov %A V. M. Shelkovich %T Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions %J Izvestiya. Mathematics %D 2005 %P 221-263 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a0/ %G en %F IM2_2005_69_2_a0
S. A. Albeverio; A. Yu. Khrennikov; V. M. Shelkovich. Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 221-263. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a0/
[1] Albeverio S., Haba Z., Russo F., “Trivial solutions for a non-linear two-space-dimensional wave equation perturbed by space-time white noise”, Stochastics Rep., 56:1–2 (1996), 127–160 | MR | Zbl
[2] Albeverio S., Gestezi F., Khëeg-Kron R., Kholden Kh., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR
[3] Albeverio S., Khrennikov A. Yu., “Representation of the Weyl group in spaces of square integrable functions with respect to $p$-adic valued Gaussian distributions”, J. of Phys. A, 29 (1996), 5515–5527 | DOI | MR | Zbl
[4] Albeverio S., Khrennikov A. Yu., “$p$-adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom”, Int. J. of Modern Phys. B, 10 (1996), 1665–1673 | DOI | MR
[5] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., Associated homogeneous $p$-adic distributions, Report 02133. MSI, Växjö University, Sweden, 2002 | Zbl
[6] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., “Prisoedinennye odnorodnye $p$-adicheskie obobschennye funktsii”, Dokl. RAN, 393:3 (2003), 300–303 | MR
[7] Albeverio S., Kurasov P., Singular perturbations of differential operators, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[8] Aref'eva Ya., Dragovic B. G., Volovich I. V., “On the adelic string amplitudes”, Phys. Lett. B, 209:4 (1998), 445–450 | DOI | MR
[9] Berezin F. A., Faddeev L. D., “Zamechanie ob uravnenii Shrëdingera s singulyarnym potentsialom”, DAN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl
[10] Bruhat F., “Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes $p$-adiques”, Bull. Soc. math. France, 89 (1961), 43–75 | MR | Zbl
[11] Colombeau J. F., Elementary introduction to new generalized functions, North Holland, Amsterdam, 1985 | MR | Zbl
[12] Danilov V. G., Maslov V. P., Shelkovich V. M., “Algebry osobennostei singulyarnykh reshenii kvazilineinykh strogo giperbolicheskikh sistem pervogo poryadka”, TMF, 141:1 (1998), 3–55 | MR
[13] Danilov V. G., Shelkovich V. M., “Propagation and interaction of shock waves of quasilinear equation”, Nonlinear Studies, 8:1 (2001), 135–170 | MR
[14] Danilov V. G., Omel'yanov G. A., Shelkovich V. M., “Weak Asymptotics Method and Interaction of Nonlinear Waves”, Asymptotic Methods for Wave and Quantum Problems, Amer. Math. Soc. Transl. (2), 208, ed. M. Karasev, 2003, 33–165 | MR
[15] Danilov V. G., Shelkovich V. M., “Rasprostranenie i vzaimodeistvie $\delta$-udarnykh voln giperbolicheskikh sistem zakonov sokhraneniya”, Dokl. RAN, 394:1 (2004), 10–14 | MR | Zbl
[16] Egorov Yu. V., “K teorii obobschennykh funktsii”, UMN, 45:5 (1990), 3–40 | Zbl
[17] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B, 199 (1987), 191–195 | DOI | MR
[18] Gelfand I. M., Shilov G. E., “Obobschennye funktsii”, Obobschennye funktsii, vyp. 1, GIFML, M., 1959
[19] Gelfand I. M., Graev M. I., Pyatetskii-Shapiro I. I., “Teoriya predstavlenii i avtomorfnye funktsii”, Obobschennye funktsii, vyp. 6, Nauka, M., 1966 | MR
[20] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R., Geometric theory of generalized functions with applications to general relativity, Academic Publ., Dordrecht, 2001 | MR | Zbl
[21] Ivanov V. K., “Asimptoticheskoe priblizhenie k proizvedeniyu obobschennykh funktsii”, Izv. vuzov. Matematika, 1981, no. 1, 19–26 | Zbl
[22] Khrennikov A., $p$-Adic Valued Distributions in Mathematical Physics, Kluwer Academic Publ., Dordrecht, 1994 | MR | Zbl
[23] Khrennikov A. Yu., Nearkhimedov analiz i ego prilozheniya, Fizmatlit, M., 2003 | MR | Zbl
[24] Khrennikov A. Yu., “Fundamentalnye resheniya nad polem $p$-adicheskikh chisel”, SPb. matem. zhurn., 4:3 (1993), 248–266 | MR
[25] Khrennikov A., “$p$-Adic discrete dynamical systems and their applications in phisics and cognitive science”, Russian J. of math. physics, 11:1 (2004), 45–70 | MR | Zbl
[26] Khrennikov A., Radyno Ya. V., “On adelic analogue of Laplacian”, Proccedings of Jangjeon Mathematical Society, 6:1 (2003), 1–18 | MR | Zbl
[27] Khrennikov A. Yu., Shelkovich V. M., Smolyanov O. G., “Locally convex spaces of vector-valued distributions with multiplicative structures”, Infinite-Dimensional Analysis, Quantum Probability and Related Topics, 5:4 (2002), 1–20 | DOI | MR
[28] Kochubei A. N., “Operator differentsirovaniya na podmnozhestvakh polya $p$-adicheskikh chisel”, Izv. RAN. Ser. matem., 56:5 (1992), 1021–1039 | MR
[29] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, Monographs and Textbooks in Pure and Applied Mathematics, 244, Marcel Dekker, N. Y., 2001 | MR | Zbl
[30] Kudryavtsev V. A., Summirovanie stepenei chisel naturalnogo ryada i chisla Bernulli, ONTI NKTP SSSR, M.–L., 1936
[31] Li Bang-He, “Non-standard analysis and multiplication of distributions”, Acta scientia sinica, 21:5 (1978), 561–585 | MR
[32] Livchak Ya. B., “K teorii obobschennykh funktsii”, Tr. Rizhskogo algebraicheskogo seminara, Latv. gos. un-t im. Petra Stuchki, Riga, 1969, 98–164
[33] Marinari E., Parisi G., “On the $p$-adic five point functions”, Phys. Lett. B, 203 (1988), 52–56 | DOI | MR
[34] Parisi G., “$p$-adic functional integral”, Mod. Phys. Lett. A, 4 (1988), 369–374 | MR
[35] Oberguggenberger M., Multiplication of distributions and applications to partial differential equations, Longman, Harlow, 1992 | MR | Zbl
[36] Oberguggenberger M., Russo F., “Nonlinear SPDEs: Colombeau solutions and pathwise limits”, Stochastic Analysis and Related Topics, vol. VI, Birkhaeuser, Boston, 1998, 319–332 | MR | Zbl
[37] Oberguggenberger M., Kunzinger M., “Characterization of Colombeau generalized functions by their pointvalues”, Math. Nachr., 203 (1999), 147–157 | MR | Zbl
[38] Oberguggenberger M., Pilipovic S., Scarpalezos D., “Local properties of Colombeau generalized functions”, Math. Nachr., 256 (2003), 88–99 | DOI | MR | Zbl
[39] Smolyanov O. G., Khrennikov A. Yu., Shelkovich V. M., “Multiplikativnye struktury v lineinom prostranstve vektornoznachnykh raspredelenii”, Dokl. RAN, 383:1 (2002), 28–31 | MR | Zbl
[40] Shelkovich V. M., “Assotsiativno-kommutativnaya algebra raspredelenii, vklyuchayuschaya multiplikatory, i obobschennye resheniya nelineinykh uravnenii”, Matem. zametki, 57:5 (1995), 765–783 | MR | Zbl
[41] Shelkovich V. M., “Teoriya obobschennykh funktsii Kolombo, ispolzuyuschaya garmonicheskie regulyarizatsii”, Matem. zametki, 63:2 (1998), 313–316 | MR | Zbl
[42] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, URSS, M., 2003, 159–212 | MR | Zbl
[43] Vilenkin N. Ya., “Obobschennye funktsii”, Funktsionalnyi analiz, Spravoch., ed. S. G. Krein, Nauka, M., 1972 | Zbl
[44] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:3 (1988), 17–53 | Zbl
[45] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[46] Vladimirov V. S., Zapuzhak T. M., “Adelic formulas for string amplitudes in fields of algebraic numbers”, Lett. Math. Phys., 37 (1996), 232–242 | DOI | MR
[47] Vladimirov V. S., Volovich I. V., “$p$-Adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl
[48] Volovich I. V., “$p$-adicheskoe prostranstvo-vremya i teoriya strun”, TMF, 71:3 (1987), 337–340 | MR | Zbl
[49] Volovich I. V., “$p$-adic string”, Class. Quant. Grav., 4 (1987), L83–L87 | DOI | MR