Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions
Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 221-263

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an algebraic theory which can be used for solving both linear and non-linear singular problems of $p$-adic analysis related to $p$-adic distributions (generalized functions). We construct the $p$-adic Colombeau–Egorov algebra of generalized functions, in which Vladimirov's pseudo-differential operator plays the role of differentiation. This algebra is closed under Fourier transformation and associative convolution. Pointvalues of generalized functions are defined, and it turns out that any generalized function is uniquely determined by its pointvalues. We also construct an associative algebra of asymptotic distributions, which is generated by the linear span of the set of associated homogeneous $p$-adic distributions. This algebra is embedded in the Colombeau–Egorov algebra as a subalgebra. In addition, a new technique for constructing weak asymptotics is developed.
@article{IM2_2005_69_2_a0,
     author = {S. A. Albeverio and A. Yu. Khrennikov and V. M. Shelkovich},
     title = {Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions},
     journal = {Izvestiya. Mathematics },
     pages = {221--263},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a0/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - A. Yu. Khrennikov
AU  - V. M. Shelkovich
TI  - Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 221
EP  - 263
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a0/
LA  - en
ID  - IM2_2005_69_2_a0
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A A. Yu. Khrennikov
%A V. M. Shelkovich
%T Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions
%J Izvestiya. Mathematics 
%D 2005
%P 221-263
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a0/
%G en
%F IM2_2005_69_2_a0
S. A. Albeverio; A. Yu. Khrennikov; V. M. Shelkovich. Non-linear singular problems in $p$-adic analysis: associative algebras of $p$-adic distributions. Izvestiya. Mathematics , Tome 69 (2005) no. 2, pp. 221-263. http://geodesic.mathdoc.fr/item/IM2_2005_69_2_a0/