The Cayley--Laplace differential operator on the space of rectangular matrices
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 191-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the homogeneous Cayley–Laplace differential operator on the space of rectangular real matrices. Using Riesz potentials, we obtain fundamental solutions for this operator and some of its powers. We establish that the Cayley–Laplace operator satisfies the strong Huygens principle. Using intertwining operators with spectral parameters, we consider deformations of the Cayley–Laplace operator and find sufficient conditions under which these deformations satisfy the strong Huygens principle.
@article{IM2_2005_69_1_a9,
     author = {S. P. Khekalo},
     title = {The {Cayley--Laplace} differential operator on the space of rectangular matrices},
     journal = {Izvestiya. Mathematics },
     pages = {191--219},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a9/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - The Cayley--Laplace differential operator on the space of rectangular matrices
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 191
EP  - 219
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a9/
LA  - en
ID  - IM2_2005_69_1_a9
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T The Cayley--Laplace differential operator on the space of rectangular matrices
%J Izvestiya. Mathematics 
%D 2005
%P 191-219
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a9/
%G en
%F IM2_2005_69_1_a9
S. P. Khekalo. The Cayley--Laplace differential operator on the space of rectangular matrices. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 191-219. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a9/

[1] Berest Yu. Yu., Veselov A. P., “Printsip Gyuigensa i integriruemost”, UMN, 49:6(300) (1994), 8–78 | MR

[2] Berest Y., “Hierarchies of Huygens' Operators and Hadamard's Conjecture”, Acta Appl. Math., 53 (1998), 125–185 | DOI | MR | Zbl

[3] Berest Y. Y., Loutsenko I. M., “Huygens' Principle in Minkowski Spaces and Soliton Solutions of the Korteweg–de Vries Equation”, Commun. Math. Phys., 190 (1997), 113–132 | DOI | MR | Zbl

[4] Gårding L., “The solution of Cauchy's problem for two totally hyperbolic differential equations by means of Riesz integrals”, Ann. Math., 48:4 (1947), 785–826 | DOI | MR

[5] Vainberg B. R., Gindikin S. G., “Ob usilennom printsipe Gyuigensa dlya odnogo klassa differentsialnykh operatorov s postoyannymi koeffitsientami”, Tr. Mosk. matem. ob-va, 16 (1967), 151–180 | MR | Zbl

[6] Gindikin S. G., “Analiz v odnorodnykh oblastyakh”, UMN, 19:4(118) (1964), 3–92 | MR | Zbl

[7] Riesz M., “L'integrale de Riemann–Liouville et le probleme de Cauchi”, Acta Math., 81 (1949), 1–223 | DOI | MR | Zbl

[8] Berest Y., Molchanov Y., “Fundamental solution for partial differential equations with reflection group invariance”, J. Math. Phys., 36:8 (1995), 4324–4339 | DOI | MR | Zbl

[9] Semyanistyi V. I., “Nekotorye integralnye preobrazovaniya i integralnaya geometriya v ellipticheskom prostranstve”, Tr. sem. po vekt. i tenz. an., no. 12, Izd-vo MGU, M., 1963, 397–441

[10] Ournycheva E., Rubin B., An analogue of the Fuglede formula in integral geometry on matrix space, arXiv: math.FA/0401127 | MR

[11] Khekalo S. P., “Potentsialy Rissa v prostranstve pryamougolnykh matrits i izogyuigensova deformatsiya operatora Keli–Laplasa”, Dokl. RAN, 376:2 (2001), 168–170 | MR | Zbl

[12] Gindikin S. G., “Zadacha Koshi dlya silno odnorodnykh differentsialnykh operatorov”, Tr. Mosk. matem. ob-va, 16 (1967), 181–208 | MR | Zbl

[13] Gabrielov A. M., Palamodov V. P., “Printsip Gyuigensa i ego obobscheniya”, Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaya geometriya. Izbrannye trudy, Nauka, M., 1968, 449–456 | MR

[14] Khekalo S. P., “Izogyuigensovy deformatsii odnorodnykh differentsialnykh operatorov, svyazannykh so spetsialnym konusom ranga 3”, Matem. zametki, 70:6 (2001), 927–940 | MR | Zbl

[15] Petrov E. E., “Preobrazovanie Radona v prostranstve matrits”, Tr. sem. po vekt. i tenz. an., 15, Izd-vo MGU, M., 1970, 299–315 | MR

[16] Petrov E. E., “Vychety obobschennoi funktsii $|{\det x}|^\lambda\operatorname{sgn}^\nu(\det x)$”, Izv. vuzov. Matematika, 1991, no. 3, 83–86 | MR | Zbl

[17] Khekalo S. P., “Izogyuigensovy deformatsii operatora Keli obschim potentsialom Lagneze–Shtelmakhera”, Izv. RAN. Ser. matem., 67:4 (2003), 189–212 | MR | Zbl

[18] Gantmakher F. R., Teoriya matrits, Fizmatgiz, M., 1988 | MR

[19] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl

[20] Herz C., “Bessel function of matrix argument”, Ann. of Math., 61:3 (1955), 474–523 | DOI | MR | Zbl

[21] Rubin B., Zeta integrals and integral geometry in the spase of rectangular matrices, Preprint, The Hebrew Univ. of Jerusalem, 2004 | MR

[22] Denef Zh., “O lokalnoi dzeta-funktsii Iguzy”, Tr. sem. N. Burbaki za 1991 g., Mir, M., 1998, 300–330

[23] Bernshtein I. N., “Analiticheskoe prodolzhenie obobschennykh funktsii po parametru”, Funkts. analiz i ego prilozh., 6:4 (1972), 26–40 | MR

[24] Hua Loo Keng, Harmonic analysis of functions of many complex variables in the classical domaines, AMS, Providence, 1963 | Zbl

[25] Trev Zh., Lektsii po lineinym uravneniyam v chastnykh proizvodnykh s postoyannymi koeffitsientami, Mir, M., 1965 | Zbl

[26] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, vyp. 1, Fizmatgiz, M., 1958

[27] Faraut J., Koranyi A., Analysis on symmetric cones, Clarendon Press, Oxford, 1994 | MR | Zbl

[28] Khekalo S. P., Dzeta-funktsiya Iguzy, assotsiirovannaya so slozhnoi stepennoi funktsiei na prostranstve pryamougolnykh matrits, Preprint No 10, POMI, 2004 | MR | Zbl

[29] Khelgason S., Preobrazovanie Radona, Mir, M., 1983 | MR | Zbl

[30] Shibasov L. P., “Integralnye zadachi v prostranstve matrits, svyazannye s funktsionalom $X_{n,m}^\lambda$”, Izv. vuzov. Matematika, 1973, no. 8, 101–112 | MR | Zbl

[31] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatgiz, M., 1989 | MR

[32] Samko G. S., Hypersingular integrals and their applications, Analytical Methods and Special Functions, 5, Taylor and Francis, London, 2002 | MR | Zbl

[33] Rubin B., “Inversion of $k$-plane transforms via continuons wavelet transforms”, J. of Math. Anal. and Appl., 220 (1998), 187–203 | DOI | MR | Zbl

[34] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Fizmatgiz, M., 1983 | MR

[35] Wilson G., “Bispectral commutative ordinary differential operators”, J. reine angew. Math., 442 (1993), 177–204 | MR | Zbl

[36] Khekalo S., “The gauge related differential operators”, International seminar Day on diffraction'2003, PDMI, Saint-Petersburg, 2003, 43–45