The Cayley--Laplace differential operator on the space of rectangular matrices
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 191-219

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the homogeneous Cayley–Laplace differential operator on the space of rectangular real matrices. Using Riesz potentials, we obtain fundamental solutions for this operator and some of its powers. We establish that the Cayley–Laplace operator satisfies the strong Huygens principle. Using intertwining operators with spectral parameters, we consider deformations of the Cayley–Laplace operator and find sufficient conditions under which these deformations satisfy the strong Huygens principle.
@article{IM2_2005_69_1_a9,
     author = {S. P. Khekalo},
     title = {The {Cayley--Laplace} differential operator on the space of rectangular matrices},
     journal = {Izvestiya. Mathematics },
     pages = {191--219},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a9/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - The Cayley--Laplace differential operator on the space of rectangular matrices
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 191
EP  - 219
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a9/
LA  - en
ID  - IM2_2005_69_1_a9
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T The Cayley--Laplace differential operator on the space of rectangular matrices
%J Izvestiya. Mathematics 
%D 2005
%P 191-219
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a9/
%G en
%F IM2_2005_69_1_a9
S. P. Khekalo. The Cayley--Laplace differential operator on the space of rectangular matrices. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 191-219. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a9/