Joint universality of general Dirichlet series
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 131-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

A joint universality theorem of Voronin type is proved for general Dirichlet series under certain conditions on the coefficients and system of exponents.
@article{IM2_2005_69_1_a5,
     author = {A. P. Laurincikas},
     title = {Joint universality of general {Dirichlet} series},
     journal = {Izvestiya. Mathematics },
     pages = {131--142},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a5/}
}
TY  - JOUR
AU  - A. P. Laurincikas
TI  - Joint universality of general Dirichlet series
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 131
EP  - 142
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a5/
LA  - en
ID  - IM2_2005_69_1_a5
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%T Joint universality of general Dirichlet series
%J Izvestiya. Mathematics 
%D 2005
%P 131-142
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a5/
%G en
%F IM2_2005_69_1_a5
A. P. Laurincikas. Joint universality of general Dirichlet series. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 131-142. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a5/

[1] Laurinčikas A., Schwarz W., Steuding J., “The universality of general Dirichlet series”, Analysis, 23 (2003), 13–26 | MR | Zbl

[2] Voronin S. M., “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[3] Voronin S. M., “Teorema o raspredelenii znachenii dzeta-funktsii Rimana”, DAN SSSR, 221:4 (1975), 771 | MR | Zbl

[4] Voronin S. M., Issledovanie povedeniya dzeta-funktsii Rimana, Dis. ... kand. fiz.-mat. nauk, MIAN SSSR, M., 1972

[5] Voronin S. M., Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov, Dis. ... d-ra fiz.-mat. nauk, MIAN SSSR, M., 1977

[6] Voronin S. M., “Analiticheskie svoistva proizvodyaschikh funktsii Dirikhle arifmeticheskikh ob'ektov”, Matem. zametki, 24:6 (1978), 879–884 | MR | Zbl

[7] Voronin S. M., “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27:2 (1975), 493–503 | MR | Zbl

[8] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR

[9] Gonek S. M., Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979

[10] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian statistical Institute, Calcutta, 1981

[11] Bagchi B., “Joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI | MR | Zbl

[12] Laurinčikas A., “On the zeros of linear combinations of the Matsumoto zeta-functions”, Liet. Matem. Rink., 38:2 (1998), 185–204 | MR | Zbl

[13] Laurinčikas A., Matsumoto K., “The joint universality and the functional independence for Lerch zeta-function”, Nagoya. Math. J., 157 (2000), 211–227 | MR | Zbl

[14] Laurinčikas A., Matsumoto K., “The joint universality of zeta-function attached to certain cusp forms”, Proc. Sci. Seminar Faculty of Phys. and Math., 5, Siauliai University, 2002, 57–75 | MR

[15] Šleževičienė R., “The joint universality for twists of Dirichlet series with multiplicative coefficients by characters”, Analytic and Probab. Methods in Number Theory, Proc. of the Third Palanga Conf. (2001), eds. A. Dubickas et al., TEV, Vilnius, 2002, 309–319 | MR

[16] Laurinčikas A., Matsumoto K., “The joint universality of twisted automorphic $L$-functions”, J. Math. Soc. Japan, 56:3 (2004), 923–939 | DOI | MR | Zbl

[17] Laurinčikas A., “The joint universality for general Dirichlet series”, Ann. Univ. Sc. Budapest. Sect. Comp., 22 (2003), 235–251 | MR | Zbl

[18] Genys J., Laurinčikas A., “On joint limit theorem for general Dirichlet series”, Nonlinear Analysis: Modeling and Control, 8:2 (2003), 27–39 | MR | Zbl

[19] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, London, 1996 | MR

[20] Laurinčikas A., Schwarz N., Steuding J., “Value distribution of general Dirichlet series, III”, Analytic and Probab. Methods in Number Theory, Proc. of the Third Palanga Conf. (2001), eds. A. Dubickas et al., TEV, Vilnius, 2002, 137–156 | MR | Zbl

[21] Walsch J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Coll. Publ., 20, 1960