On the fundamental groups of the complements of Hurwitz curves
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 123-130

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the commutator subgroup of the fundamental group of the complement of any plane affine irreducible Hurwitz curve (or any plane affine irreducible pseudoholomorphic curve) is finitely presented. It is shown that there is a Hurwitz curve (resp. pseudoholomorphic curve) in $\mathbb{CP}^2$ such that the fundamental group of its complement is non-Hopfian and, therefore, this group is not residually finite. We also prove the existence of an irreducible non-singular algebraic curve $C\subset\mathbb C^2$ and a bidisc $D\subset\mathbb C^2$ such that the fundamental group $\pi_1(D\setminus C)$ is non-Hopfian.
@article{IM2_2005_69_1_a4,
     author = {O. V. Kulikova},
     title = {On the fundamental groups of the complements of {Hurwitz} curves},
     journal = {Izvestiya. Mathematics },
     pages = {123--130},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a4/}
}
TY  - JOUR
AU  - O. V. Kulikova
TI  - On the fundamental groups of the complements of Hurwitz curves
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 123
EP  - 130
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a4/
LA  - en
ID  - IM2_2005_69_1_a4
ER  - 
%0 Journal Article
%A O. V. Kulikova
%T On the fundamental groups of the complements of Hurwitz curves
%J Izvestiya. Mathematics 
%D 2005
%P 123-130
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a4/
%G en
%F IM2_2005_69_1_a4
O. V. Kulikova. On the fundamental groups of the complements of Hurwitz curves. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 123-130. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a4/