On large values of the function $S(t)$ on short intervals
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 113-122

Voir la notice de l'article provenant de la source Math-Net.Ru

We study upper and lower bounds for the argument of the Riemann zeta-function on short intervals of the critical line.
@article{IM2_2005_69_1_a3,
     author = {M. A. Korolev},
     title = {On large values of the function $S(t)$ on short intervals},
     journal = {Izvestiya. Mathematics },
     pages = {113--122},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On large values of the function $S(t)$ on short intervals
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 113
EP  - 122
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/
LA  - en
ID  - IM2_2005_69_1_a3
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On large values of the function $S(t)$ on short intervals
%J Izvestiya. Mathematics 
%D 2005
%P 113-122
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/
%G en
%F IM2_2005_69_1_a3
M. A. Korolev. On large values of the function $S(t)$ on short intervals. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 113-122. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/