On large values of the function $S(t)$ on short intervals
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 113-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study upper and lower bounds for the argument of the Riemann zeta-function on short intervals of the critical line.
@article{IM2_2005_69_1_a3,
     author = {M. A. Korolev},
     title = {On large values of the function $S(t)$ on short intervals},
     journal = {Izvestiya. Mathematics },
     pages = {113--122},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On large values of the function $S(t)$ on short intervals
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 113
EP  - 122
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/
LA  - en
ID  - IM2_2005_69_1_a3
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On large values of the function $S(t)$ on short intervals
%J Izvestiya. Mathematics 
%D 2005
%P 113-122
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/
%G en
%F IM2_2005_69_1_a3
M. A. Korolev. On large values of the function $S(t)$ on short intervals. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 113-122. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/

[1] Karatsuba A. A., “O funktsii $S(t)$”, Izv. RAN. Ser. matem., 60:5 (1996), 27–56 | MR | Zbl

[2] Karatsuba A. A., “Plotnostnaya teorema i povedenie argumenta dzeta-funktsii Rimana”, Matem. zametki, 60:3 (1996), 448–449 | MR | Zbl

[3] Korolëv M. A., “O chisle peremen znaka funktsii $S(t)$ na korotkom promezhutke”, Dokl. RAN, 382:4 (2002), 446–447 | MR

[4] Korolëv M. A., “Ob argumente dzeta-funktsii Rimana na kriticheskoi pryamoi”, Tr. MIAN, 239, Nauka, M., 2002, 215–238 | MR

[5] Korolëv M. A., “Ob argumente dzeta-funktsii Rimana na kriticheskoi pryamoi”, Izv. RAN. Ser. matem., 67:2 (2003), 21–60 | MR

[6] Korolëv M. A., “O povedenii funktsii $S(t)$ na korotkikh promezhutkakh”, Dokl. RAN, 390:5 (2003), 588–589 | MR

[7] Korolëv M. A., Povedenie argumenta dzeta-funktsii Rimana na kriticheskoi pryamoi, Avtoref. dis. ...kand. fiz.-mat. nauk, MGU, M., 2003

[8] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, 1-e izd., IL, M., 1953

[9] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl

[10] Montgomery H. L., “Extreme values of the Riemann zeta-function”, Comment. Math. Helv., 52:4 (1977), 511–518 | DOI | MR | Zbl

[11] Tsang K.-M., “Some $\Omega$-theorems for the Riemann zeta-function”, Acta Arith., 46:4 (1986), 369–395 | MR | Zbl

[12] Ramachandra K., Sankaranarayanan A., “On some theorems of Littlewood and Selberg, I”, J. Number Theory, 44:3 (1991), 281–291 | DOI | MR

[13] Odlyzko A. M., The $10^{20}$-th zero of the Riemann zeta-function and 70 million of its neigbors, AT Bell Laboratories, Murray Hill, 1987

[14] Mozer Ya., “O funktsii $S(t)$ v teorii dzeta-funktsii Rimana”, Acta Arith., 30:2 (1976), 145–158 | MR | Zbl

[15] Ghosh A., “On the Riemann zeta-function – mean value theorems and the disribution of $|S(T)|$”, J. Number Theory, 17 (1983), 93–102 | DOI | MR | Zbl