Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2005_69_1_a3, author = {M. A. Korolev}, title = {On large values of the function $S(t)$ on short intervals}, journal = {Izvestiya. Mathematics }, pages = {113--122}, publisher = {mathdoc}, volume = {69}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/} }
M. A. Korolev. On large values of the function $S(t)$ on short intervals. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 113-122. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a3/
[1] Karatsuba A. A., “O funktsii $S(t)$”, Izv. RAN. Ser. matem., 60:5 (1996), 27–56 | MR | Zbl
[2] Karatsuba A. A., “Plotnostnaya teorema i povedenie argumenta dzeta-funktsii Rimana”, Matem. zametki, 60:3 (1996), 448–449 | MR | Zbl
[3] Korolëv M. A., “O chisle peremen znaka funktsii $S(t)$ na korotkom promezhutke”, Dokl. RAN, 382:4 (2002), 446–447 | MR
[4] Korolëv M. A., “Ob argumente dzeta-funktsii Rimana na kriticheskoi pryamoi”, Tr. MIAN, 239, Nauka, M., 2002, 215–238 | MR
[5] Korolëv M. A., “Ob argumente dzeta-funktsii Rimana na kriticheskoi pryamoi”, Izv. RAN. Ser. matem., 67:2 (2003), 21–60 | MR
[6] Korolëv M. A., “O povedenii funktsii $S(t)$ na korotkikh promezhutkakh”, Dokl. RAN, 390:5 (2003), 588–589 | MR
[7] Korolëv M. A., Povedenie argumenta dzeta-funktsii Rimana na kriticheskoi pryamoi, Avtoref. dis. ...kand. fiz.-mat. nauk, MGU, M., 2003
[8] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, 1-e izd., IL, M., 1953
[9] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR | Zbl
[10] Montgomery H. L., “Extreme values of the Riemann zeta-function”, Comment. Math. Helv., 52:4 (1977), 511–518 | DOI | MR | Zbl
[11] Tsang K.-M., “Some $\Omega$-theorems for the Riemann zeta-function”, Acta Arith., 46:4 (1986), 369–395 | MR | Zbl
[12] Ramachandra K., Sankaranarayanan A., “On some theorems of Littlewood and Selberg, I”, J. Number Theory, 44:3 (1991), 281–291 | DOI | MR
[13] Odlyzko A. M., The $10^{20}$-th zero of the Riemann zeta-function and 70 million of its neigbors, AT Bell Laboratories, Murray Hill, 1987
[14] Mozer Ya., “O funktsii $S(t)$ v teorii dzeta-funktsii Rimana”, Acta Arith., 30:2 (1976), 145–158 | MR | Zbl
[15] Ghosh A., “On the Riemann zeta-function – mean value theorems and the disribution of $|S(T)|$”, J. Number Theory, 17 (1983), 93–102 | DOI | MR | Zbl