Regular Mittag-Leffler kernels and spectral decomposition of a~class of non-selfadjoint operators
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 15-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define abstract Mittag-Leffler kernels with values in a separable Hilbert space. A Mittag-Leffler kernel is said to be $c$-regular (resp. $d$-regular) if it generates an integral transform of Fourier–Dzhrbashyan type (resp. if the space has an unconditional basis consisting of values of the kernel). We give a complete description of $d$-regular and $c$-regular kernels, which enables us to answer a question of M. G. Krein. We apply the notion of a regular Mittag-Leffler kernel to construct the spectral decomposition for one-dimensional perturbations of fractional powers of dissipative Volterra operators.
@article{IM2_2005_69_1_a1,
     author = {G. M. Gubreev},
     title = {Regular {Mittag-Leffler} kernels and spectral decomposition of a~class of non-selfadjoint operators},
     journal = {Izvestiya. Mathematics },
     pages = {15--57},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a1/}
}
TY  - JOUR
AU  - G. M. Gubreev
TI  - Regular Mittag-Leffler kernels and spectral decomposition of a~class of non-selfadjoint operators
JO  - Izvestiya. Mathematics 
PY  - 2005
SP  - 15
EP  - 57
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a1/
LA  - en
ID  - IM2_2005_69_1_a1
ER  - 
%0 Journal Article
%A G. M. Gubreev
%T Regular Mittag-Leffler kernels and spectral decomposition of a~class of non-selfadjoint operators
%J Izvestiya. Mathematics 
%D 2005
%P 15-57
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a1/
%G en
%F IM2_2005_69_1_a1
G. M. Gubreev. Regular Mittag-Leffler kernels and spectral decomposition of a~class of non-selfadjoint operators. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 15-57. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a1/

[1] Brodskii M. S., Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969 | MR

[2] Sekefalvi-Nad B., Foiash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[3] Gubreev G. M., “Spektralnyi analiz biortogonalnykh razlozhenii, porozhdaemykh vesami Makenkhaupta”, Zapiski nauch. sem. LOMI, 190, Nauka, L., 1991, 34–80

[4] Gubreev G. M., Spektralnyi analiz biortogonalnykh razlozhenii, porozhdaemykh vesami Makenkhaupta, Dis. ...dokt. fiz.-mat. nauk, FTINT, Kharkov, 1995

[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Nauka, M., 1984 | MR

[6] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[7] Ostrovskii I. V., Peresyolkova I. N., “Non-asymptotic result on distribution of zeros of the function $E_\rho(z,\mu)$”, Theory of functions and Appl., Collection of works dedicaded to the memory of M. M. Djrbashian, In-t matematiki, Erevan, 1995, 49–152

[8] Sedletskii A. M., “Asymtotic formulas for zeros of a function of Mittag-Leffler's type”, Anal. Math., 20 (1994), 117–132 | DOI | MR

[9] Gelfand I. M., Graev M. I., Retakh V. S., “Obschie gamma-funktsii, eksponenty i gipergeometricheskie funktsii”, UMN, 53:1 (1998), 3–60 | MR | Zbl

[10] Maergoiz L. S., “Indikatornaya i sopryazhennaya diagrammy tseloi funktsii utochnennogo poryadka i ee obobschennye preobrazovaniya Borelya”, Algebra i analiz, 12:2 (2000), 1–63 | MR | Zbl

[11] Maergoiz L. S., Indikatornaya i sopryazhennaya diagrammy tseloi funktsii utochnennogo poryadka, Preprint No 789F, Krasnoyar. gos. un-t, Krasnoyarsk, 1998

[12] Gubreev G. M., “$L_2$-ustoichivye polugruppy, vesa Makenkhaupta i bezuslovnye bazisy iz znachenii kvazieksponent”, Matem. sb., 190:12 (1999), 3–36 | MR | Zbl

[13] Gubreev G. M., “Spektralnaya teoriya regulyarnykh kvazieksponent i regulyarnykh $B$-predstavimykh vektor-funktsii (metod proektirovaniya: 20 let spustya)”, Algebra i analiz, 12:6 (2000), 1–97 | MR

[14] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[15] Zolotarev V. A., “Universalnye modeli lineinykh operatorov s zadannymi ogranicheniyami na rost rezolventy”, Teor. funkts., funkts. analiz i ikh prilozh., no. 45, Kharkov, 1986, 40–45 | Zbl

[16] Malamud M. M., “O vosproizvodyaschikh podprostranstvakh volterrovykh operatorov”, Dokl. RAN, 351:4 (1996), 454–458 | MR | Zbl

[17] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 657–702 | MR | Zbl

[18] Hunt R. A., Muckenhoupt B., Wheeden R. L., “Weigted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR | Zbl

[19] David G., “Operateurs integraux singulieres sur certaines courbes du plan complexe”, Ann. Sci. Ecole Norm. Super., 17 (1984), 157–189 | MR | Zbl

[20] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR

[21] Gubreev G. M., Volkova M. G., “Bezuslovnye bazisy gilbertovykh prostranstv, sostoyaschie iz znachenii tselykh vektor-funktsii polovinnogo poryadka rosta”, Zapiski nauch. sem. POMI, 290, POMI, SPb., 2002, 33–41 | MR | Zbl

[22] Gubreev G. M., “O spektralnom razlozhenii konechnomernykh vozmuschenii dissipativnykh volterrovykh operatorov”, Tr. MMO, 64, URSS, M., 2003, 90–140 | MR | Zbl

[23] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR