Regular Mittag-Leffler kernels and spectral decomposition of a~class of non-selfadjoint operators
Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 15-57
Voir la notice de l'article provenant de la source Math-Net.Ru
We define abstract Mittag-Leffler kernels with values in a separable Hilbert space. A Mittag-Leffler kernel is said to be $c$-regular (resp. $d$-regular) if it generates an integral transform of Fourier–Dzhrbashyan type (resp. if the space has an unconditional basis consisting of values of the kernel). We give a complete description of $d$-regular and $c$-regular kernels, which enables us to answer a question of M. G. Krein. We apply the notion of a regular Mittag-Leffler kernel to construct the spectral decomposition for one-dimensional perturbations of fractional powers of dissipative Volterra operators.
@article{IM2_2005_69_1_a1,
author = {G. M. Gubreev},
title = {Regular {Mittag-Leffler} kernels and spectral decomposition of a~class of non-selfadjoint operators},
journal = {Izvestiya. Mathematics },
pages = {15--57},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a1/}
}
TY - JOUR AU - G. M. Gubreev TI - Regular Mittag-Leffler kernels and spectral decomposition of a~class of non-selfadjoint operators JO - Izvestiya. Mathematics PY - 2005 SP - 15 EP - 57 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a1/ LA - en ID - IM2_2005_69_1_a1 ER -
G. M. Gubreev. Regular Mittag-Leffler kernels and spectral decomposition of a~class of non-selfadjoint operators. Izvestiya. Mathematics , Tome 69 (2005) no. 1, pp. 15-57. http://geodesic.mathdoc.fr/item/IM2_2005_69_1_a1/