Birationally superrigid cyclic triple spaces
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1229-1275

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the birational superrigidity and non-rationality of a cyclic triple covering of $\mathbb{P}^{2n}$ branched over a nodal hypersurface of degree $3n$ for $n\geqslant 2$. The result obtained solves the problem of birational superrigidity for smooth cyclic triple spaces. We also consider certain relevant problems.
@article{IM2_2004_68_6_a8,
     author = {I. A. Cheltsov},
     title = {Birationally superrigid cyclic triple spaces},
     journal = {Izvestiya. Mathematics },
     pages = {1229--1275},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a8/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Birationally superrigid cyclic triple spaces
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1229
EP  - 1275
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a8/
LA  - en
ID  - IM2_2004_68_6_a8
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Birationally superrigid cyclic triple spaces
%J Izvestiya. Mathematics 
%D 2004
%P 1229-1275
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a8/
%G en
%F IM2_2004_68_6_a8
I. A. Cheltsov. Birationally superrigid cyclic triple spaces. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1229-1275. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a8/