Birationally superrigid cyclic triple spaces
Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1229-1275
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the birational superrigidity and non-rationality of a cyclic triple covering of $\mathbb{P}^{2n}$ branched over a nodal hypersurface of degree $3n$ for $n\geqslant 2$. The result obtained solves the problem of birational superrigidity for smooth cyclic triple spaces. We also consider certain relevant problems.
@article{IM2_2004_68_6_a8,
author = {I. A. Cheltsov},
title = {Birationally superrigid cyclic triple spaces},
journal = {Izvestiya. Mathematics },
pages = {1229--1275},
publisher = {mathdoc},
volume = {68},
number = {6},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a8/}
}
I. A. Cheltsov. Birationally superrigid cyclic triple spaces. Izvestiya. Mathematics , Tome 68 (2004) no. 6, pp. 1229-1275. http://geodesic.mathdoc.fr/item/IM2_2004_68_6_a8/