On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1025-1049
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain some new results on the completeness of systems of functions $f^{(n)}(\lambda_nz)$ in the space of entire functions with the topology of uniform convergence on an arbitrary
compact set in $\mathbb C$. In the presence of lacunae in the Taylor expansion of the function $f(z)$, we prove the existence of bases consisting of subsystems of this form.
@article{IM2_2004_68_5_a6,
author = {A. Yu. Popov},
title = {On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$},
journal = {Izvestiya. Mathematics },
pages = {1025--1049},
publisher = {mathdoc},
volume = {68},
number = {5},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a6/}
}
TY - JOUR
AU - A. Yu. Popov
TI - On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$
JO - Izvestiya. Mathematics
PY - 2004
SP - 1025
EP - 1049
VL - 68
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a6/
LA - en
ID - IM2_2004_68_5_a6
ER -
A. Yu. Popov. On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1025-1049. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a6/