On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1025-1049

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some new results on the completeness of systems of functions $f^{(n)}(\lambda_nz)$ in the space of entire functions with the topology of uniform convergence on an arbitrary compact set in $\mathbb C$. In the presence of lacunae in the Taylor expansion of the function $f(z)$, we prove the existence of bases consisting of subsystems of this form.
@article{IM2_2004_68_5_a6,
     author = {A. Yu. Popov},
     title = {On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$},
     journal = {Izvestiya. Mathematics },
     pages = {1025--1049},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a6/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1025
EP  - 1049
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a6/
LA  - en
ID  - IM2_2004_68_5_a6
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$
%J Izvestiya. Mathematics 
%D 2004
%P 1025-1049
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a6/
%G en
%F IM2_2004_68_5_a6
A. Yu. Popov. On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1025-1049. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a6/