On expansion of quantum quadratic stochastic processes into fibrewise Markov processes defined on von Neumann algebras
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1009-1024.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an expansion of a quantum quadratic stochastic process (q.q.s.p.) into a so-called fibrewise Markov process and prove that, conversely, such an expansion uniquely determines the quantum quadratic stochastic process. As an application, we give a criterion (in terms of this expansion) for the q.q.s.p. to satisfy the ergodic principle. Using this result, we prove that a q.q.s.p. satisfies the ergodic principle if and only if the associated Markov process satisfies this principle. The expansion obtained is used to introduce a new notion of conjugacy of two q.q.s.p.'s and to study the relation between this notion and the ergodic principle.
@article{IM2_2004_68_5_a5,
     author = {F. M. Mukhamedov},
     title = {On expansion of quantum quadratic stochastic processes into fibrewise {Markov} processes defined on von {Neumann} algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1009--1024},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a5/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
TI  - On expansion of quantum quadratic stochastic processes into fibrewise Markov processes defined on von Neumann algebras
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 1009
EP  - 1024
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a5/
LA  - en
ID  - IM2_2004_68_5_a5
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%T On expansion of quantum quadratic stochastic processes into fibrewise Markov processes defined on von Neumann algebras
%J Izvestiya. Mathematics 
%D 2004
%P 1009-1024
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a5/
%G en
%F IM2_2004_68_5_a5
F. M. Mukhamedov. On expansion of quantum quadratic stochastic processes into fibrewise Markov processes defined on von Neumann algebras. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 1009-1024. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a5/

[1] Boltsman L., Izbrannye trudy, Nauka, M., 1984 | MR

[2] Bernshtein S. N., “Reshenie odnoi matematicheskoi problemy, svyazannoi s teoriei nasledstvennosti”, Uch. zap. NI kaf. Ukr. otd. mat., 1924, no. 1, 83–115

[3] Ulam S. M., Nereshennye matematicheskie problemy, Nauka, M., 1964 | Zbl

[4] Kesten H., “Quadratic transformations: a model for population growth. I; II”, Adv. Appl. Prob., 1970, no. 2, 1–82 ; 179–228 | DOI | MR | Zbl | Zbl

[5] Lyubich Yu. I., “Osnovnye ponyatiya i teoremy evolyutsionnoi genetiki svobodnykh populyatsii”, UMN, 26:5 (1971), 51–116 | MR | Zbl

[6] Sarymsakov T. A., Ganikhodzhaev R. N., “Ergodicheskii printsip dlya kvadratichnykh stokhasticheskikh operatorov”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1979, no. 6, 34–39 | MR

[7] Vallander S. S., “O predelnom povedenii posledovatelnosti iteratsii nekotorykh kvadratichnykh preobrazovanii”, DAN SSSR, 202:3 (1972), 515–517 | MR | Zbl

[8] Maksimov V. M., “Kubicheskie stokhasticheskie matritsy i ikh veroyatnostnye interpretatsii”, Teor. veroyatn. i ee primen., 41:1 (1996), 89–106 | MR | Zbl

[9] Lyubich Yu. I., Matematicheskie struktury v populyatsionnoi genetike, Nauk. dumka, Kiev, 1983 | MR

[10] Sarymsakov T. A., Ganikhodzhaev N. N., “Analiticheskie metody v teorii kvadratichnykh stokhasticheskikh operatorov”, DAN SSSR, 305:5 (1989), 1052–1056 | MR | Zbl

[11] Sarymsakov T. A., Ganikhodzhaev N. N., “Ob ergodicheskom printsipe dlya kvadratichnykh protsessov”, DAN SSSR, 316:6 (1991), 1315–1319 | MR | Zbl

[12] Sarymsakov T. A., Ganikhodzhaev N. N., “Analytic methods in the theory of quadratic stochastic processes”, J. Theor. Prob., 3:1 (1990), 51–70 | DOI | MR | Zbl

[13] Ganikhodzhaev N. N., Mukhamedov F. M., “O kvantovykh kvadratichnykh stokhasticheskikh protsessakh”, DAN Resp. Uzb., 1997, no. 3, 13–16 | MR | Zbl

[14] Ganikhodzhaev N. N., Mukhamedov F. M., “O kvantovykh kvadratichnykh stokhasticheskikh protsessakh i nekotorye ergodicheskie teoremy dlya takikh protsessov”, Uzb. matem. zhurn., 1997, no. 3, 8–20 | MR | Zbl

[15] Ganikhodzhaev N. N., Mukhamedov F. M., “Ergodicheskie svoistva kvantovykh kvadratichnykh stokhasticheskikh protsessov”, UMN, 53:6 (1998), 243–244 | MR | Zbl

[16] Ganikhodzhaev N. N., Mukhamedov F. M., “Usloviya regulyarnosti kvantovykh kvadratichnykh stokhasticheskikh protsessov”, Dokl. RAN, 365:3 (1999), 301–303 | MR | Zbl

[17] Ganikhodzhaev N. N., Mukhamedov F. M., “Ergodicheskie svoistva kvantovykh kvadratichnykh stokhasticheskikh protsessov”, Izv. RAN. Ser. matem., 65:5 (2000), 3–20 | MR

[18] Mukhamedov F. M., “O razlozhenii kvantovykh kvadratichnykh stokhasticheskikh protsessov”, Dokl. RAN, 371:2 (2000), 167–169 | MR | Zbl

[19] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[20] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer, N.Y., 1971 | MR | Zbl

[21] Kolmogorov A. N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–51