On the coincidence of types of a~real $AW^*$-algebra and its complexification
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 851-860

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider real $AW^*$-algebras, that is, Kaplansky algebras over the field of real numbers. As in the case of complex von Neumann algebras and complex $AW^*$-algebras, real $AW^*$-algebras are classified in terms of types $\mathrm{I}_{\mathrm{fin}}$, $\mathrm{I}_\infty$, $\mathrm{II}_1$, $\mathrm{II}_\infty$, and $\mathrm{III}$. We prove that if the complexification $M=A+iA$ of a real $AW^*$-algebra A also is an $AW^*$-algebra, then the types of $A$ and $M$ coincide.
@article{IM2_2004_68_5_a0,
     author = {S. A. Albeverio and Sh. A. Ayupov and A. Kh. Abduvaitov},
     title = {On the coincidence of types of a~real $AW^*$-algebra and its complexification},
     journal = {Izvestiya. Mathematics },
     pages = {851--860},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a0/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - Sh. A. Ayupov
AU  - A. Kh. Abduvaitov
TI  - On the coincidence of types of a~real $AW^*$-algebra and its complexification
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 851
EP  - 860
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a0/
LA  - en
ID  - IM2_2004_68_5_a0
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A Sh. A. Ayupov
%A A. Kh. Abduvaitov
%T On the coincidence of types of a~real $AW^*$-algebra and its complexification
%J Izvestiya. Mathematics 
%D 2004
%P 851-860
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a0/
%G en
%F IM2_2004_68_5_a0
S. A. Albeverio; Sh. A. Ayupov; A. Kh. Abduvaitov. On the coincidence of types of a~real $AW^*$-algebra and its complexification. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 851-860. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a0/