On the coincidence of types of a~real $AW^*$-algebra and its complexification
Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 851-860
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider real $AW^*$-algebras, that is, Kaplansky algebras over the field of real numbers. As in the case of complex von Neumann algebras and complex $AW^*$-algebras, real $AW^*$-algebras are classified in terms of types $\mathrm{I}_{\mathrm{fin}}$, $\mathrm{I}_\infty$, $\mathrm{II}_1$, $\mathrm{II}_\infty$, and $\mathrm{III}$. We prove that if the complexification $M=A+iA$ of a real $AW^*$-algebra A also is an $AW^*$-algebra, then the types of $A$ and $M$ coincide.
@article{IM2_2004_68_5_a0,
author = {S. A. Albeverio and Sh. A. Ayupov and A. Kh. Abduvaitov},
title = {On the coincidence of types of a~real $AW^*$-algebra and its complexification},
journal = {Izvestiya. Mathematics },
pages = {851--860},
publisher = {mathdoc},
volume = {68},
number = {5},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a0/}
}
TY - JOUR AU - S. A. Albeverio AU - Sh. A. Ayupov AU - A. Kh. Abduvaitov TI - On the coincidence of types of a~real $AW^*$-algebra and its complexification JO - Izvestiya. Mathematics PY - 2004 SP - 851 EP - 860 VL - 68 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a0/ LA - en ID - IM2_2004_68_5_a0 ER -
%0 Journal Article %A S. A. Albeverio %A Sh. A. Ayupov %A A. Kh. Abduvaitov %T On the coincidence of types of a~real $AW^*$-algebra and its complexification %J Izvestiya. Mathematics %D 2004 %P 851-860 %V 68 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a0/ %G en %F IM2_2004_68_5_a0
S. A. Albeverio; Sh. A. Ayupov; A. Kh. Abduvaitov. On the coincidence of types of a~real $AW^*$-algebra and its complexification. Izvestiya. Mathematics , Tome 68 (2004) no. 5, pp. 851-860. http://geodesic.mathdoc.fr/item/IM2_2004_68_5_a0/