Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type
Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 783-832

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two different abstract Cauchy problems for equations of Sobolev type with operator coefficients in Banach spaces. For the first problem we obtain, under certain conditions on the coefficients, optimal theorems on the existence and non-existence of a solution global in time. In the case when the solution is blown up we obtain upper and lower bounds for the blow-up time. For the second problem we obtain optimal upper and lower bounds for the rate of blow-up of a solution. In each case we give examples in which the operator coefficients have a physical meaning.
@article{IM2_2004_68_4_a4,
     author = {M. O. Korpusov},
     title = {Blow-up of solutions of a~class of strongly non-linear equations of {Sobolev} type},
     journal = {Izvestiya. Mathematics },
     pages = {783--832},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 783
EP  - 832
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a4/
LA  - en
ID  - IM2_2004_68_4_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type
%J Izvestiya. Mathematics 
%D 2004
%P 783-832
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a4/
%G en
%F IM2_2004_68_4_a4
M. O. Korpusov. Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type. Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 783-832. http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a4/