Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type
Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 783-832.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two different abstract Cauchy problems for equations of Sobolev type with operator coefficients in Banach spaces. For the first problem we obtain, under certain conditions on the coefficients, optimal theorems on the existence and non-existence of a solution global in time. In the case when the solution is blown up we obtain upper and lower bounds for the blow-up time. For the second problem we obtain optimal upper and lower bounds for the rate of blow-up of a solution. In each case we give examples in which the operator coefficients have a physical meaning.
@article{IM2_2004_68_4_a4,
     author = {M. O. Korpusov},
     title = {Blow-up of solutions of a~class of strongly non-linear equations of {Sobolev} type},
     journal = {Izvestiya. Mathematics },
     pages = {783--832},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a4/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 783
EP  - 832
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a4/
LA  - en
ID  - IM2_2004_68_4_a4
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type
%J Izvestiya. Mathematics 
%D 2004
%P 783-832
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a4/
%G en
%F IM2_2004_68_4_a4
M. O. Korpusov. Blow-up of solutions of a~class of strongly non-linear equations of Sobolev type. Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 783-832. http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a4/

[1] Korpusov M. O., Sveshnikov A. G., “Trekhmernye nelineinye evolyutsionnye uravneniya psevdoparabolicheskogo tipa v zadachakh matematicheskoi fiziki”, ZhVM i MF, 43:12 (2003), 1835–1869 | MR | Zbl

[2] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[3] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinnovatykh sredakh”, PMM, 24:5 (1960), 58–73 | MR

[4] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR

[5] Gabov S. A., Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998 | Zbl

[6] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. MIAN, 179, Nauka, M., 1988, 126–164 | MR

[7] Dzektser E. S., “Obobschenie uravnenii dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, DAN SSSR, 202:5 (1972), 1031–1033 | Zbl

[8] Sviridyuk G. A., “Ob odnoi modeli dinamiki neszhimaemoi vyazkouprugoi zhidkosti”, Izv. vuzov. Matematika, 1988, no. 1, 74–79 | MR | Zbl

[9] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1967

[10] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “O nestatsionarnykh volnakh v sredakh s anizotropnoi dispersiei”, ZhVM i MF, 39:6 (1999), 1006–1022 | MR | Zbl

[11] Korpusov M. O., Pletner Yu. D., Sveshnikov A. G., “O kvazistatsionarnykh protsessakh v provodyaschikh sredakh bez dispersii”, ZhVM i MF, 40:8 (2000), 1237–1249 | MR | Zbl

[12] Levine H. A., “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$”, Arch. Rational. Mech. Analys, 51 (1973), 371–386 | MR | Zbl

[13] Levine H. A., Park S. R., Serrin J., “Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type”, J. Differential equations, 142 (1998), 212–229 | DOI | MR | Zbl

[14] Kozhanov A. I., “Parabolicheskie uravneniya s nelineinym nelokalnym istochnikom”, Sib. matem. zhurn., 35:5 (1994), 1062–1073 | MR | Zbl

[15] Kozhanov A. I., “Nachalno-kraevaya zadacha dlya uravnenii tipa obobschennogo uravneniya Bussineska s nelineinym istochnikom”, Matem. zametki, 65:1 (1999), 70–75 | MR | Zbl

[16] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 1–383 | MR | Zbl

[17] Laptev G. G., “Ob otsutstvii reshenii odnogo klassa singulyarnykh polulineinykh differentsialnykh neravenstv”, Tr. MIAN, 232, Nauka, M., 2001, 223–235 | MR | Zbl

[18] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[19] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[20] Lions Zh. -L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[21] Postnikov M. M., Lektsii po geometrii. Semestr 2. Lineinaya algebra, Nauka, M., 1986 | MR | Zbl

[22] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR

[23] Demidovich V. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[24] Pokhozhaev S. I., “Ob odnom podkhode k nelineinym uravneniyam”, DAN SSSR, 247:6 (1979), 1327–1331 | MR | Zbl

[25] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, GITTL, M., 1956

[26] Lyusternik L. A., Shnirelman L. G., “Topologicheskie metody v variatsionnykh zadachakh”, Trudy Instituta matematiki i mekhaniki pri 1 MGU, 1930, 1–68

[27] Moren K., Metody gilbertova prostranstva, Mir, M., 1965 | MR

[28] Dyachenko M. I., Ulyanov P. L., Mera i integral, Faktorial, M., 1998

[29] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984 | Zbl