t-stabilities and t-structures on triangulated categories
Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 749-781.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new concept of t-stability in a triangulated category. It generalizes the stability data introduced by Bridgeland [6]. We study some links between t-stabilities and t-structures and obtain a complete classification of t-stabilities and bounded t-structures on the derived categories of coherent sheaves on the projective line and on an elliptic curve.
@article{IM2_2004_68_4_a3,
     author = {A. L. Gorodentsev and S. A. Kuleshov and A. N. Rudakov},
     title = {t-stabilities and t-structures on triangulated categories},
     journal = {Izvestiya. Mathematics },
     pages = {749--781},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a3/}
}
TY  - JOUR
AU  - A. L. Gorodentsev
AU  - S. A. Kuleshov
AU  - A. N. Rudakov
TI  - t-stabilities and t-structures on triangulated categories
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 749
EP  - 781
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a3/
LA  - en
ID  - IM2_2004_68_4_a3
ER  - 
%0 Journal Article
%A A. L. Gorodentsev
%A S. A. Kuleshov
%A A. N. Rudakov
%T t-stabilities and t-structures on triangulated categories
%J Izvestiya. Mathematics 
%D 2004
%P 749-781
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a3/
%G en
%F IM2_2004_68_4_a3
A. L. Gorodentsev; S. A. Kuleshov; A. N. Rudakov. t-stabilities and t-structures on triangulated categories. Izvestiya. Mathematics , Tome 68 (2004) no. 4, pp. 749-781. http://geodesic.mathdoc.fr/item/IM2_2004_68_4_a3/

[1] Atiyah M. F., “Vector Bundles Over an Elliptic Curve”, Proc. Lond. Math. Soc., VII (1957), 414–452 | DOI | MR

[2] Beilinson A. A., “Coherent Sheaves on $\mathbb P^n$ and Problems in Linear Algebra”, Funk. An., 12:3 (1978), 68–69 | MR | Zbl

[3] Bondal A. I., “Helices, Representations of Quivers and Koszul Algebras”, Helices and Vector Bundles, Seminare Rudakov, London Math. Soc. Lect. N. Ser., 148, 1990, 75–95 | MR | Zbl

[4] Bondal A., Orlov D., “Reconstruction of a variety from the derived category and groups of autoequivalences”, Compositio Math., 125:3 (2001), 327–344 | DOI | MR | Zbl

[5] Bondal A., Van den Bergh M., “Generators and representability of functors in commutative and noncommutative geometry”, Moscow Math. J., 3:1 (2003), 1–36 ; E-print math.AG/0204218 | MR | Zbl

[6] Bridgeland T., Stability conditions on triangulated categories, E-print math.AG/0212237 | MR

[7] Bridgeland T., Stability conditions on K3-surfaces, E-print math.AG/0307164 | MR

[8] Gelfand S. I., Manin Yu. I., Metody gomologicheskoi algebry, T. 1, Nauka, M., 1988 | MR

[9] Douglas M. R., Dirichlet branes, homological mirror symmetry, and stability, E-print math.AG/0207021 | MR

[10] Gieseker D., “On the moduli of vector bundles on an algebraic surface”, Ann. of Math., 106 (1977), 45 | DOI | MR | Zbl

[11] Gorodentsev A., Kuleshov S., Helix theory, Preprint No 97, MPI, 2001 | MR

[12] Happel D., Reiten I., Smalo S., Tilting in abelian categories and quasitilted algebra, Memoirs of the AMS, 575, Amer. Math. Soc., N.Y., 1996 | MR | Zbl

[13] Maruyama M., “Moduli of stable sheaves, I”, J. Math. Kyoto, 17 (1977), 91 | MR | Zbl

[14] Maruyama M., “Moduli of stable sheaves, II”, J. Math. Kyoto, 18 (1978), 557 | MR | Zbl

[15] Rudakov A., “Stability for an abelian category”, J. Algebra, 197:1 (1997), 231–245 | DOI | MR | Zbl