Problems on the set of squarefree numbers
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 493-520.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a positive integer and $\operatorname{ES}_N$ the maximal cardinality of a subset $\mathscr A\subset\{1,\dots,N\}$ such that $a+a'$ is squarefree for all $a\in\mathscr A$, $a'\in\mathscr A$. For large $N$ we obtain new upper and lower bounds for $\operatorname{ES}_N$.
@article{IM2_2004_68_3_a4,
     author = {S. V. Konyagin},
     title = {Problems on the set of squarefree numbers},
     journal = {Izvestiya. Mathematics },
     pages = {493--520},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a4/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Problems on the set of squarefree numbers
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 493
EP  - 520
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a4/
LA  - en
ID  - IM2_2004_68_3_a4
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Problems on the set of squarefree numbers
%J Izvestiya. Mathematics 
%D 2004
%P 493-520
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a4/
%G en
%F IM2_2004_68_3_a4
S. V. Konyagin. Problems on the set of squarefree numbers. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 493-520. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a4/

[1] Balog A., Ruzsa I. Z., “A new lower bound for the $L^1$ mean of the exponential sum with the Möbius function”, Bull. Lond. Math. Soc., 31 (1999), 415–418 | DOI | MR | Zbl

[2] Balog A. Ruzsa I. Z., “On the exponential sum over $r$-free integers”, Acta Math. Hung., 90 (2001), 219–230 | DOI | MR | Zbl

[3] Bomberi E., Zanne U., “O chisle ratsionalnykh tochek na nekotorykh ellipticheskikh krivykh”, Izv. RAN. Ser. matem., 68:3 (2004), 5–14 | MR

[4] Devenport G., Multiplikatavnaya teoriya chisel, Nauka, M., 1989

[5] Erdős P., Van Lint J. H., “On the number of positive integers $\leq x$ and free of prime factors $>y$”, Simon Stevin, 40 (1966/67), 73–76 | MR | Zbl

[6] Erdős P., Sárközy A., “On divisibility properties of integers of the form $a+a'$”, Acta Math. Hung., 50 (1987), 117–122 | DOI | MR | Zbl

[7] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Nauka, M., 1969

[8] Gorbachev D. V., Improvement Taykov's lower bound in an inequation between $C$ and $L$ norms for trigonometric polynomials., www.arxiv.org/math.CA/0212037

[9] Gyarmati K., “On divisibility properties of integers of the form $ab+1$”, Period. Math. Hung., 43 (2001), 71–79 | DOI | MR | Zbl

[10] Khooli K., Primenenie metodov resheta v teorii chisel, Nauka, M., 1987 | MR

[11] Konyagin S. V., “On squarefree numbers of the form $a+a'$”, Colloquium on Number Theory in honor of the 60th birthday of Professors Kálmán Győry and András Sárközy, Debrecen, 2000 | MR

[12] Korobov N. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1971 | MR | Zbl

[13] Montgomeri G., Multiplikatavnaya teoriya chisel, Mir, M., 1971

[14] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[15] Sárközy A., “On a problem of Erdős”, Acta Math. Hung., 60 (1992), 271–282 | DOI | MR | Zbl

[16] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, UMN, 20 (1965), 205–211 | MR | Zbl

[17] Taikov L. V., “O nailuchshem priblizhenii yader Dirikhle”, Matem. zametki, 53 (1993), 116–121 | MR | Zbl