Asymptotics of solutions of non-linear dissipative equations
Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 461-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the large-time asymptotic behaviour of solutions of the Cauchy problem for a system of non-linear evolution equations with dissipation. In the case when the initial data are small, we construct solutions using the contraction-mapping principle. When the initial data are large, we obtain the large-time asymptotics of solutions by taking into account a certain symmetry of the non-linear terms.
@article{IM2_2004_68_3_a3,
     author = {E. I. Kaikina and P. I. Naumkin and I. A. Shishmarev},
     title = {Asymptotics of solutions of non-linear dissipative equations},
     journal = {Izvestiya. Mathematics },
     pages = {461--492},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a3/}
}
TY  - JOUR
AU  - E. I. Kaikina
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - Asymptotics of solutions of non-linear dissipative equations
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 461
EP  - 492
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a3/
LA  - en
ID  - IM2_2004_68_3_a3
ER  - 
%0 Journal Article
%A E. I. Kaikina
%A P. I. Naumkin
%A I. A. Shishmarev
%T Asymptotics of solutions of non-linear dissipative equations
%J Izvestiya. Mathematics 
%D 2004
%P 461-492
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a3/
%G en
%F IM2_2004_68_3_a3
E. I. Kaikina; P. I. Naumkin; I. A. Shishmarev. Asymptotics of solutions of non-linear dissipative equations. Izvestiya. Mathematics , Tome 68 (2004) no. 3, pp. 461-492. http://geodesic.mathdoc.fr/item/IM2_2004_68_3_a3/

[1] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1978

[3] Broer L. J. F., “Approximate equations for long water waves”, Appl. Sci. Res., 31 (1975), 377–395 | DOI | MR | Zbl

[4] Dix D. B., Large-Time Behavior of Solutions of Linear Dispersive Equations, Lect. Notes in Math., 1668, Springer-Verlag, Berlin–Heidelberg, 1997 | MR | Zbl

[5] Dobrokhotov S. Yu., “Nelokalnye analogi nelineinogo uravneniya Bussineska dlya poverkhnostnykh voln nad nerovnym dnom i ikh asimptoticheskie resheniya”, DAN SSSR, 292:1 (1987), 63–67 | MR | Zbl

[6] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Teoriya differentsialnykh uravnenii, T. 3, Nauka, M., 1967

[7] Giga Y., Kambe T., “Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation”, Commun. Math. Phys., 117 (1988), 549–568 | DOI | MR | Zbl

[8] Gmira A., Veron L., “Large time behavior of the solutions of a semilinear parabolic equation in $\mathbb R^{n}$”, J. Diff. Eqs., 53 (1984), 258–276 | DOI | MR | Zbl

[9] Ilin A. M., Oleinik O. A., “Asimptoticheskoe povedenie reshenii zadachi Koshi dlya nekotorykh kvazilineinykh uravnenii pri bolshikh znacheniyakh vremeni”, Matem. sb., 51 (1960), 191–216 | MR | Zbl

[10] Kato T., “Strong $L^{p}$ solutions of the Navier–Stokes equations in $\mathbb R^{n}$ with applications to weak solutions”, Math. Zeit., 187 (1984), 471–480 | DOI | MR | Zbl

[11] Kaup D. J., “A higher-order water-wave equation and the method for solving it”, Prog. Theoret. Phys., 54 (1975), 396–408 | DOI | MR | Zbl

[12] Ladyzhenskaya O. A., Matematicheskaya teoriya vyazkoi neszhimaemoi zhidkosti, Fizmatgiz, M., 1961

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl

[14] Lions Zh. -L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1969 | MR

[15] Naumkin P. I., Shishmarev I. A., Nonlinear Nonlocal Equations in the Theory of Waves, 133, AMS, Providence, 1994 | MR | Zbl

[16] Naumkin P. I., Shishmarëv I. A., “Asimptotika pri $t\to\infty$ reshenii nelineinykh uravnenii s nemalymi nachalnymi vozmuscheniyami”, Matem. zametki, 59:6 (1996), 855–864 | MR | Zbl

[17] Naumkin P. I., Shishmarëv I. A., “Asimptotika pri bolshikh vremenakh reshenii sistemy uravnenii poverkhnostnykh voln”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 537–559 | MR | Zbl

[18] Naumkin P. I., Shishmarëv I. A., “Asimptoticheskoe predstavlenie poverkhnostnykh voln v vide dvukh beguschikh voln Byurgersa”, Funktsion. analiz i ego prilozh., 29:3 (1995), 25–40 | MR | Zbl

[19] Schonbek M. E., “Uniform decay rates for parabolic conservation laws”, Nonlinear Anal. T.M.A., 10:9 (1986), 943–953 | DOI | MR

[20] Schonbek M. E., “Lower bounds of rates of decay for solutions to the Navier–Stokes equations”, J. Amer. Math. Soc., 4:3 (1991), 423–449 | DOI | MR | Zbl

[21] Temam R., Uravneniya Nave–Stoksa: Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[22] Uizem Dzh. B., Lineinye i nelineinye volny, Mir, M., 1977

[23] Uizem Dzh. B., Nelineinaya teoriya raspredeleniya voln, Mir, M., 1970, S. 12–39 | MR

[24] Wiegner M., “Decay results for weak solutions of the Navier–Stokes equations in $\mathbb R^{n}$”, London Math. Soc., 35:2 (1987), 363–313 | MR

[25] Zuazua E., “Some recent results on the large time behavior for scalar parabolic conservation laws”, Elliptic and Parabolic Problems, Proc. 2nd European Conference, 325, 1995, 251–263 | MR | Zbl