Classification of three-dimensional exceptional log canonical hypersurface singularities.~II
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 355-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study three-dimensional exceptional canonical hypersurface singularities which do not satisfy the condition of well-formedness. The result obtained completes the classification of three-dimensional exceptional log canonical hypersurface singularities begun in [4].
@article{IM2_2004_68_2_a5,
     author = {S. A. Kudryavtsev},
     title = {Classification of three-dimensional exceptional log canonical hypersurface {singularities.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {355--364},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a5/}
}
TY  - JOUR
AU  - S. A. Kudryavtsev
TI  - Classification of three-dimensional exceptional log canonical hypersurface singularities.~II
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 355
EP  - 364
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a5/
LA  - en
ID  - IM2_2004_68_2_a5
ER  - 
%0 Journal Article
%A S. A. Kudryavtsev
%T Classification of three-dimensional exceptional log canonical hypersurface singularities.~II
%J Izvestiya. Mathematics 
%D 2004
%P 355-364
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a5/
%G en
%F IM2_2004_68_2_a5
S. A. Kudryavtsev. Classification of three-dimensional exceptional log canonical hypersurface singularities.~II. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 355-364. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a5/

[1] Iano-Fletcher A. R., “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 73–173 | MR

[2] Ishii S., “The quotient of log-canonical singularities by finite groups”, Advanced Studies in Pure Math., 29 (2000), 135–161 | MR | Zbl

[3] Kudryavtsev S. A., “O chisto logterminalnykh razdutiyakh”, Matem. zametki, 69:6 (2001), 892–899 | MR

[4] Kudryavtsev S. A., “Klassifikatsiya trekhmernykh isklyuchitelnykh logkanonicheskikh giperpoverkhnostnykh osobennostei, I”, Izv. RAN. Ser. matem., 66:5 (2002), 83–170 | MR | Zbl

[5] Kudryavtsev S. A., Classification of three-dimensional exceptional log canonical hypersurface singularities, I, E-print math.AG/0201025 | MR

[6] Kudryavtsev S. A., Classification of three-dimensional exceptional log canonical hypersurface singularities, II, E-print math.AG/0202105 | MR

[7] Oda T., Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1988 | MR

[8] Prokhorov Yu. G., “Blow-ups of canonical singularities”, Algebra. Proc. Internat. Conf. on the Occasion of the 90th birthday of A. G. Kurosh (Moscow, May 25–30, 1998), ed. Yu. Bahturin, Walter de Gruyter, Berlin, 2000, 301–317 | MR | Zbl

[9] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl