Refined Fuchs inequalities for systems of linear differential equations
Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 259-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point.
@article{IM2_2004_68_2_a2,
     author = {R. R. Gontsov},
     title = {Refined {Fuchs} inequalities for systems of linear differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {259--272},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a2/}
}
TY  - JOUR
AU  - R. R. Gontsov
TI  - Refined Fuchs inequalities for systems of linear differential equations
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 259
EP  - 272
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a2/
LA  - en
ID  - IM2_2004_68_2_a2
ER  - 
%0 Journal Article
%A R. R. Gontsov
%T Refined Fuchs inequalities for systems of linear differential equations
%J Izvestiya. Mathematics 
%D 2004
%P 259-272
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a2/
%G en
%F IM2_2004_68_2_a2
R. R. Gontsov. Refined Fuchs inequalities for systems of linear differential equations. Izvestiya. Mathematics , Tome 68 (2004) no. 2, pp. 259-272. http://geodesic.mathdoc.fr/item/IM2_2004_68_2_a2/

[1] Balser W., Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, N. Y., 2000 | MR | Zbl

[2] Balser W., Jurkat W. B., Lutz D. A., “A general theory of invariants for meromorphic differential equations. I: Formal invariants”, Funk. Evac., 22 (1979), 197–221 | MR | Zbl

[3] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. Matem. in-ta im. V. A. Steklova RAN, 206, 1994 | MR | Zbl

[4] Bolibrukh A. A., “Kratnosti nulei komponent reshenii sistemy s regulyarnymi osobymi tochkami”, Tr. Matem. in-ta im. V. A. Steklova RAN, 236, 2002, 61–65 | MR

[5] Corel E., “Inégalités de Fuchs pour les systèmes differéntiels réguliers”, C. R. Acad. Sci. Paris. Sér. I, 328 (1999), 983–986 | MR | Zbl

[6] Corel E., “Relations de Fuchs pour les systèmes differéntiels irréguliers”, C. R. Acad. Sci. Paris. Sér. I, 333 (2001), 297–300 | MR | Zbl

[7] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl