On the strong regularity of some edge-regular graphs
Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 159-180
Voir la notice de l'article provenant de la source Math-Net.Ru
An undirected graph is said to be edge-regular with parameters $(v,k,\lambda)$ if it has $v$
vertices, each vertex has degree $k$, and each edge belongs to $\lambda$ triangles. We put
$b_1=v-k-\lambda$. Brouwer, Cohen, and Neumaier proved that every connected edge-regular
graph with $\lambda\geqslant k+1/2-\sqrt{2k+2}$ (equivalently, with
$k\geqslant b_1(b_1+3)/2+1$) is strongly regular. In this paper we construct an example of an edge-regular, not strongly regular graph on 36 vertices with $k=27=b_1(b_1+3)/2$. This shows that the estimate above is sharp. We prove that every connected edge-regular graph with $\lambda\geqslant k+1/2-\sqrt{2k+8}$ (equivalently, $k\geqslant b_1(b_1+3)/2-2$ either satisfies $b_1\leqslant 3$, or has parameters $(36,27,20)$ or $(64,52,42)$, or is strongly regular.
@article{IM2_2004_68_1_a5,
author = {A. A. Makhnev},
title = {On the strong regularity of some edge-regular graphs},
journal = {Izvestiya. Mathematics },
pages = {159--180},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a5/}
}
A. A. Makhnev. On the strong regularity of some edge-regular graphs. Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 159-180. http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a5/