Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes
Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 77-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find weak asymptotics of approximation characteristics related to the problem of recovering (reconstructing) the derivative from the function values at a given number of points, Stechkin's problem for the derivation operator, and the problem of describing asymptotics of diameters for non-isotropic Nikol'skii and Besov classes.
@article{IM2_2004_68_1_a3,
     author = {S. N. Kudryavtsev},
     title = {Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes},
     journal = {Izvestiya. Mathematics },
     pages = {77--123},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a3/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes
JO  - Izvestiya. Mathematics 
PY  - 2004
SP  - 77
EP  - 123
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a3/
LA  - en
ID  - IM2_2004_68_1_a3
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes
%J Izvestiya. Mathematics 
%D 2004
%P 77-123
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a3/
%G en
%F IM2_2004_68_1_a3
S. N. Kudryavtsev. Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes. Izvestiya. Mathematics , Tome 68 (2004) no. 1, pp. 77-123. http://geodesic.mathdoc.fr/item/IM2_2004_68_1_a3/

[1] Kudryavtsev S. N., “Vosstanovlenie funktsii vmeste s ikh proizvodnymi po znacheniyam funktsii v zadannom chisle tochek”, Izv. RAN. Ser. matem., 58:6 (1994), 79–104 | MR | Zbl

[2] Kudryavtsev S. N., “Priblizhenie operatora chastnogo differentsirovaniya ogranichennymi operatorami na klasse funktsii konechnoi gladkosti”, Matem. sb., 187:3 (1996), 75–92 | MR | Zbl

[3] Kudryavtsev S. N., “Nailuchshaya tochnost vosstanovleniya funktsii konechnoi gladkosti po ikh znacheniyam v zadannom chisle tochek”, Izv. RAN. Ser. matem., 62:1 (1998), 21–58 | MR | Zbl

[4] Kudryavtsev S. N., “Zadacha S. B. Stechkina dlya operatora chastnogo differentsirovaniya na klassakh funktsii konechnoi gladkosti”, Matem. zametki, 67:1 (2000), 77–86 | MR | Zbl

[5] Kudryavtsev S. N., “Poperechniki klassov gladkikh funktsii”, Izv. RAN. Ser. matem., 59:4 (1995), 81–104 | MR | Zbl

[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[7] Besov O. V., Ilin V. P., “Proektsionnye predstavleniya funktsii cherez raznosti”, Tr. MIAN, 150, Nauka, M., 1979, 3–10 | MR | Zbl

[8] Brudnyi Yu. A., “Mnogomernyi analog odnoi teoremy Uitni”, Matem. sb., 82(124):2(6) (1970), 175–191 | MR | Zbl

[9] Besov O. V., “O plotnosti finitnykh funktsii v $\mathcal{L}_{p,\theta} $ i rasprostranenie funktsii”, Tr. MIAN, 89, Nauka, M., 1967, 18–30 | MR | Zbl

[10] Besov O. V., “Klassy funktsii s obobschennym smeshannym usloviem Gëldera”, Tr. MIAN, 105, Nauka, M., 1969, 21–29 | MR | Zbl

[11] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Nauka, M., 1975 | MR | Zbl