On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces
Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1243-1266.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a boundary-value problem for the stationary integro-differential equation of radiation transport (transfer) in a many-component medium on whose interfaces conjugation conditions are given by Fresnel's formulae. We prove that this problem is soluble under certain assumptions, typical in radiation transport theory, and obtain estimates for the solution.
@article{IM2_2003_67_6_a5,
     author = {I. V. Prokhorov},
     title = {On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces},
     journal = {Izvestiya. Mathematics },
     pages = {1243--1266},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a5/}
}
TY  - JOUR
AU  - I. V. Prokhorov
TI  - On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 1243
EP  - 1266
VL  - 67
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a5/
LA  - en
ID  - IM2_2003_67_6_a5
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%T On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces
%J Izvestiya. Mathematics 
%D 2003
%P 1243-1266
%V 67
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a5/
%G en
%F IM2_2003_67_6_a5
I. V. Prokhorov. On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces. Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1243-1266. http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a5/

[1] Born M., Volf E., Osnovy optiki, Nauka, M., 1973

[2] Isimaru A., Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, T. 1, 2, Mir, M., 1981

[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, Nauka, M., 1961, 3–158

[6] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR

[7] Marchuk G. I., Lebedev V. I., Chislennye metody po teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[8] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[9] Germogenova T. A., “Obobschennye resheniya kraevykh zadach dlya uravneniya perenosa”, ZhVMiMF, 9:3 (1969), 605–625 | MR | Zbl

[10] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[11] Prokhorov I. V., “Nekotorye svoistva reshenii uravneniya perenosa”, Dalnevostochnyi matem. sb., 1996, no. 2, 161–173 | MR

[12] Prokhorov I. V., “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differents. uravneniya, 36:6 (2000), 848–851 | MR | Zbl

[13] Shilov G. E., Gurevich B. L., Integral, mera i proizvodnaya, Nauka, M., 1964 | MR

[14] Lavrentev M. M., Savelev L. A., Teoriya operatorov i nekorrektnye zadachi, Izd-vo Instituta matematiki, Novosibirsk, 1999 | MR

[15] Akilov G. P., Makarov B. M., Khavin V. P., Elementarnoe vvedenie v teoriyu integrala, Izd-vo LGU, L., 1969