Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_6_a5, author = {I. V. Prokhorov}, title = {On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces}, journal = {Izvestiya. Mathematics }, pages = {1243--1266}, publisher = {mathdoc}, volume = {67}, number = {6}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a5/} }
TY - JOUR AU - I. V. Prokhorov TI - On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces JO - Izvestiya. Mathematics PY - 2003 SP - 1243 EP - 1266 VL - 67 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a5/ LA - en ID - IM2_2003_67_6_a5 ER -
%0 Journal Article %A I. V. Prokhorov %T On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces %J Izvestiya. Mathematics %D 2003 %P 1243-1266 %V 67 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a5/ %G en %F IM2_2003_67_6_a5
I. V. Prokhorov. On the solubility of the boundary-value problem of radiation transport theory with generalized conjugation conditions on the interfaces. Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1243-1266. http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a5/
[1] Born M., Volf E., Osnovy optiki, Nauka, M., 1973
[2] Isimaru A., Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, T. 1, 2, Mir, M., 1981
[3] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[5] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, Nauka, M., 1961, 3–158
[6] Smelov V. V., Lektsii po teorii perenosa neitronov, Atomizdat, M., 1978 | MR
[7] Marchuk G. I., Lebedev V. I., Chislennye metody po teorii perenosa neitronov, Atomizdat, M., 1981 | MR
[8] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl
[9] Germogenova T. A., “Obobschennye resheniya kraevykh zadach dlya uravneniya perenosa”, ZhVMiMF, 9:3 (1969), 605–625 | MR | Zbl
[10] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000
[11] Prokhorov I. V., “Nekotorye svoistva reshenii uravneniya perenosa”, Dalnevostochnyi matem. sb., 1996, no. 2, 161–173 | MR
[12] Prokhorov I. V., “Kraevaya zadacha teorii perenosa izlucheniya v neodnorodnoi srede s usloviyami otrazheniya na granitse”, Differents. uravneniya, 36:6 (2000), 848–851 | MR | Zbl
[13] Shilov G. E., Gurevich B. L., Integral, mera i proizvodnaya, Nauka, M., 1964 | MR
[14] Lavrentev M. M., Savelev L. A., Teoriya operatorov i nekorrektnye zadachi, Izd-vo Instituta matematiki, Novosibirsk, 1999 | MR
[15] Akilov G. P., Makarov B. M., Khavin V. P., Elementarnoe vvedenie v teoriyu integrala, Izd-vo LGU, L., 1969