Non-local elliptic problems with non-linear argument transformations near the points of conjugation
Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1149-1186
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider elliptic equations of order $2m$ in a domain $G\subset\mathbb R^n$ with non-local conditions that connect the values of the unknown function and its derivatives on
$(n-1)$-dimensional submanifolds $\overline\Upsilon_i$ (where
$\bigcup_i\overline\Upsilon_i=\partial G$ with the values on
$\omega_{is}(\overline\Upsilon_i)\subset\overline G$. Non-local elliptic problems in dihedral angles arise as model problems near the conjugation points
$g\in\overline\Upsilon_i\cap \overline\Upsilon_j\ne\varnothing$, $i\ne j$. We study the case when the transformations $\omega_{is}$ correspond to non-linear transformations in the model problems. It is proved that the operator of the problem remains Fredholm and its index does not change as we pass from linear argument transformations to non-linear ones.
@article{IM2_2003_67_6_a2,
author = {P. L. Gurevich},
title = {Non-local elliptic problems with non-linear argument transformations near the points of conjugation},
journal = {Izvestiya. Mathematics },
pages = {1149--1186},
publisher = {mathdoc},
volume = {67},
number = {6},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a2/}
}
TY - JOUR AU - P. L. Gurevich TI - Non-local elliptic problems with non-linear argument transformations near the points of conjugation JO - Izvestiya. Mathematics PY - 2003 SP - 1149 EP - 1186 VL - 67 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a2/ LA - en ID - IM2_2003_67_6_a2 ER -
P. L. Gurevich. Non-local elliptic problems with non-linear argument transformations near the points of conjugation. Izvestiya. Mathematics , Tome 67 (2003) no. 6, pp. 1149-1186. http://geodesic.mathdoc.fr/item/IM2_2003_67_6_a2/