On quasiconformally flat surfaces in Riemannian manifolds
Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 931-953.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish two properties of $K$-quasiconformally flat hypersurfaces in general Riemannian manifolds. The first is stated in isoperimetric terms and the second in terms of the main frequency of sections of the manifold by geodesic spheres. The two conditions coincide in the two-dimensional case.
@article{IM2_2003_67_5_a3,
     author = {V. M. Miklyukov},
     title = {On quasiconformally flat surfaces in {Riemannian} manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {931--953},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a3/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - On quasiconformally flat surfaces in Riemannian manifolds
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 931
EP  - 953
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a3/
LA  - en
ID  - IM2_2003_67_5_a3
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T On quasiconformally flat surfaces in Riemannian manifolds
%J Izvestiya. Mathematics 
%D 2003
%P 931-953
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a3/
%G en
%F IM2_2003_67_5_a3
V. M. Miklyukov. On quasiconformally flat surfaces in Riemannian manifolds. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 931-953. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a3/

[1] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. I, II, Nauka, M., 1981

[2] Hebey E., Sobolev Spases on Riemannian Manifolds, Lect. Not. Math., 1635, Springer-Verlag, Berlin–Heidelberg–N.Y., 1991

[3] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR

[4] Gehring F. W., “Uniform domains and the ubiquitous quasidisk”, Jahrsber. Deutsch. Math. Verein., 89 (1987), 88–103 | MR | Zbl

[5] Anderson G. D., Vamanamurthy M. K., Vuorinen M. K., Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Math. Soc. Ser. of Monographs and Advanced Texts, John Wiley Sons, N.Y.–Chichester–Weinheim–Brisbane–Singapore–Toronto, 1997 | MR

[6] Krushkal S. L., “Kvazikonformnye zerkala”, Sib. matem. zhurn., 40:4 (1999), 880–892 | MR

[7] Beurling A., Ahlfors L., “The boundary correspondence under quasiconformal mappings”, Acta Math., 96 (1956), 125–142 | DOI | MR | Zbl

[8] Vuorinen M., Martio O., Miklyukov V. M., “K geometricheskoi strukture kvaziploskostei”, Tr. kafedry matematicheskogo analiza i teorii funktsii Volgogradskogo gosudarstvennogo universiteta, Izd-vo Volgogradskogo gos. un-ta, Volgograd, 2002, 21–31

[9] Martio O., Miklyukov V., Ponnusamy S., Vuorinen M., “On Some Properties of Quasiplanes”, Results in Math., 42 (2002), 107–113 | MR | Zbl

[10] Belinskii P. P., Obschie svoistva kvazikonformnykh otobrazhenii, Nauka, Novosibirsk, 1974 | MR | Zbl

[11] De Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956

[12] Hajlasz P., “Sobolev Mappings, Co-Area Formula and Related Topics”, Tr. po analizu i geometrii, Izd-vo Instituta matematiki, Novosibirsk, 2000, 227–254 | MR | Zbl

[13] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, M., 1980 | MR | Zbl

[14] Manfredi J. J., “Weakly Monotone Functions”, J. Geom. Anal., 4:2 (1994), 393–402 | MR | Zbl

[15] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing, Boston–London–Melbourne, 1980 | MR | Zbl

[16] Miklyukov V. M., “Ob asimptoticheskikh svoistvakh subreshenii kvazilineinykh uravnenii ellipticheskogo tipa i otobrazhenii s ogranichennym iskazheniem”, Matem. sb., 111 (1980), 42–66 | MR | Zbl

[17] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[18] Evans L. C., Gariepy R. F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC PRESS, Boca Raton–N.Y.–London–Tokio, 1992 | MR | Zbl

[19] Martio O., Miklyukov V. M., Vuorinen M., “Harnack's inequality for $p$-harmonic functions on Riemannian manifolds for different exhaustion”, Kompleksnyi analiz v sovremennoi matematike, K 80-letiyu so dnya rozhdeniya B. V. Shabata, ed. E. M. Chirka, Fazis, M., 2001, 201–230 | MR | Zbl

[20] Vuorinen M., Lect. Not. in Math., 1319, Springer-Verlag, N.Y., 1988 | MR | Zbl

[21] Franke D., Martio O., Miklyukov V. M., Vuorinen M., Wisk R., “Quasiregular mappings and $\mathscr{WT}$-classes of differential forms on Riemannian manifolds”, Pacific J. Math., 202:1 (2002), 73–92 | MR | Zbl

[22] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[23] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR