On solutions of mixed boundary-value problems for the elasticity system in unbounded domains
Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 895-929.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of generalized solutions of mixed boundary-value problems for the linear system of elasticity theory in the exterior of a compact set and in a half-space under the assumption that the energy integral with weight $|x|^a$ is finite for such solutions. Depending on the value of the parameter $a$, a uniqueness criterion is established for these solutions, and exact formulae are obtained for the dimension of the space of solutions.
@article{IM2_2003_67_5_a2,
     author = {H. Matevossian},
     title = {On solutions of mixed boundary-value problems for the elasticity system in unbounded domains},
     journal = {Izvestiya. Mathematics },
     pages = {895--929},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a2/}
}
TY  - JOUR
AU  - H. Matevossian
TI  - On solutions of mixed boundary-value problems for the elasticity system in unbounded domains
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 895
EP  - 929
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a2/
LA  - en
ID  - IM2_2003_67_5_a2
ER  - 
%0 Journal Article
%A H. Matevossian
%T On solutions of mixed boundary-value problems for the elasticity system in unbounded domains
%J Izvestiya. Mathematics 
%D 2003
%P 895-929
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a2/
%G en
%F IM2_2003_67_5_a2
H. Matevossian. On solutions of mixed boundary-value problems for the elasticity system in unbounded domains. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 895-929. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a2/

[1] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[2] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, UMN, 43:5 (1988), 55–98 | MR | Zbl

[3] Kondratiev V. A., Oleinik O. A., “Hardy's and Korn's type inequality and their applications”, Rend. Mat. Appl. Serie VII, 10 (1990), 641–666 | MR | Zbl

[4] Kondratev V. A., Oleinik O. A., “O neravenstvakh Korna i edinstvennosti reshenii klassicheskikh kraevykh zadach v neogranichennykh oblastyakh dlya sistemy teorii uprugosti”, Sovremennye problemy matematicheskoi fiziki, T. 1, Izd-vo Tbil. un-ta, Tbilisi, 1987, 35–63 | MR

[5] Kondratev V. A., Oleinik O. A., “O periodicheskikh po vremeni resheniyakh parabolicheskogo uravneniya vtorogo poryadka vo vneshnikh oblastyakh”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1985, no. 4, 38–47 | MR | Zbl

[6] Knops R. J., Payne L. E., Uniqueness theorems in linear elasticity, Springer-Verlag, Berlin, 1971 | MR

[7] Mikhailova T. V., “Smeshannaya kraevaya zadacha dlya sistemy teorii uprugosti v neogranichennykh oblastyakh”, UMN, 46:4 (1991), 163–164 | MR

[8] Konkov A. A., “O razmernosti prostranstva reshenii ellipticheskikh sistem v neogranichennykh oblastyakh”, Matem. sb., 184:12 (1993), 23–52 | MR | Zbl

[9] Kudryavtsev L. D., “Reshenie pervoi kraevoi zadachi dlya samosopryazhennykh ellipticheskikh uravnenii v sluchae neogranichennoi oblasti”, Izv. AN SSSR. Ser. matem., 31:5 (1967), 1179–1199 | MR | Zbl

[10] Matevosyan O. A., “O edinstvennosti reshenii zadachi Robena dlya sistemy teorii uprugosti v poluprostranstve”, UMN, 58:4 (2003), 151–152 | MR | Zbl

[11] Matevosyan O. A., “O edinstvennosti resheniya smeshannoi zadachi sistemy teorii uprugosti dlya neogranichennykh oblastei”, UMN, 49:4 (1994), 129–130 | MR

[12] Matevosyan O. A., “O resheniyakh kraevykh zadach dlya sistemy teorii uprugosti i bigarmonicheskogo uravneniya v poluprostranstve”, Diff. uravn., 34:6 (1998), 806–811 | MR | Zbl

[13] Matevosyan O. A., “O resheniyakh vneshnei zadachi Dirikhle dlya bigarmonicheskogo uravneniya s konechnym vesovym integralom Dirikhle”, Matem. zametki, 70:3 (2001), 403–418 | MR | Zbl

[14] Buchukuri T. V., Gegeliya T. G., “O edinstvennosti reshenii osnovnykh zadach teorii uprugosti dlya beskonechnykh oblastei”, Diff. uravn., 25:9 (1989), 1556–1565 | MR | Zbl

[15] Lopatinskii Ya. B., Teoriya obschikh granichnykh zadach. Izbrannye trudy, Nauk. dumka, Kiev, 1984 | MR

[16] Kondratiev V. A., Oleinik O. A., “On the behavior at infinity of solutions of elliptic systems with a finite energy integral”, Arch. Rat. Mech. and Analysis, 99:1 (1987), 75–99 | MR | Zbl

[17] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977 | MR

[18] Douglis A., Nirenberg L., “Interior estimates for elliptic systems of partial differential equations”, Commun. Pure Appl. Math., 8 (1955), 503–538 | DOI | MR | Zbl

[19] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, T. I, IL, M., 1962

[20] Morrey C. B., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin–Heidelberg–N. Y., 1966 | MR | Zbl

[21] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR