On the summability of entropy solutions for the Dirichlet problem in a~class of non-linear elliptic fourth-order equations
Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 881-894.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present some results on the summability of entropy solutions for the Dirichlet problem in a class of fourth-order non-linear elliptic equations in relation to integrability properties of their right-hand sides. Consideration is given to the cases in which the right-hand sides belong to Lebesgue spaces with exponents close to unity and also to some wider sets contained in $L^1$.
@article{IM2_2003_67_5_a1,
     author = {A. A. Kovalevsky},
     title = {On the summability of entropy solutions for the {Dirichlet} problem in a~class of non-linear elliptic fourth-order equations},
     journal = {Izvestiya. Mathematics },
     pages = {881--894},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a1/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - On the summability of entropy solutions for the Dirichlet problem in a~class of non-linear elliptic fourth-order equations
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 881
EP  - 894
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a1/
LA  - en
ID  - IM2_2003_67_5_a1
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T On the summability of entropy solutions for the Dirichlet problem in a~class of non-linear elliptic fourth-order equations
%J Izvestiya. Mathematics 
%D 2003
%P 881-894
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a1/
%G en
%F IM2_2003_67_5_a1
A. A. Kovalevsky. On the summability of entropy solutions for the Dirichlet problem in a~class of non-linear elliptic fourth-order equations. Izvestiya. Mathematics , Tome 67 (2003) no. 5, pp. 881-894. http://geodesic.mathdoc.fr/item/IM2_2003_67_5_a1/

[1] Kovalevsky A., “Entropy solutions of Dirichlet problem for a class of nonlinear elliptic fourth order equations with $L^1$-data”, Nonlinear Boundary Value Problems, 9 (1999), 46–54 | Zbl

[2] Kovalevskii A. A., “Entropiinye resheniya zadachi Dirikhle dlya odnogo klassa nelineinykh ellipticheskikh uravnenii chetvertogo poryadka s $L^1$-pravymi chastyami”, Izv. RAN. Ser. matem., 65:2 (2001), 27–80 | MR | Zbl

[3] Bénilan Ph., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241–273 | MR | Zbl

[4] Boccardo L., Gallouët T., “Non-linear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87 (1989), 149–169 | DOI | MR | Zbl

[5] Boccardo L., Gallouët T., “Nonlinear elliptic equations with right hand side measures”, Comm. Partial Differential Equations, 17 (1992), 641–655 | MR | Zbl

[6] Kovalevskii A. A., “O summiruemosti reshenii nelineinykh ellipticheskikh uravnenii s pravymi chastyami iz klassov, blizkikh k $L^1$”, Matem. zametki, 70:3 (2001), 375–385 | MR | Zbl

[7] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983 | MR | Zbl

[8] Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969 | MR | Zbl