Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels
Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 695-779

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic formulae for the eigenvalues of integral convolution operators on a finite interval with homogeneous polar (complex) kernels. In the Fourier–Laplace images, the eigenvalue and eigenfunction problems are reduced to the Hilbert linear conjugation problem for a holomorphic vector-valued function with two components. This problem is in turn reduced to a system of integral equations on the half-line, and analytic properties of solutions of this system are studied in the Mellin images in Banach spaces of holomorphic functions with fixed poles. We study the structure of the canonical matrix of solutions of this Hilbert problem at the singular points, along with its asymptotic behaviour for large values of the reduced spectral parameter. The investigation of the resulting characteristic equations yields three terms (four in the positive self-adjoint case) of the asymptotic expansions of the eigenvalues, along with estimates of the remainders.
@article{IM2_2003_67_4_a2,
     author = {B. V. Pal'tsev},
     title = {Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels},
     journal = {Izvestiya. Mathematics },
     pages = {695--779},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a2/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 695
EP  - 779
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a2/
LA  - en
ID  - IM2_2003_67_4_a2
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels
%J Izvestiya. Mathematics 
%D 2003
%P 695-779
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a2/
%G en
%F IM2_2003_67_4_a2
B. V. Pal'tsev. Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels. Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 695-779. http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a2/