Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels
Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 695-779.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic formulae for the eigenvalues of integral convolution operators on a finite interval with homogeneous polar (complex) kernels. In the Fourier–Laplace images, the eigenvalue and eigenfunction problems are reduced to the Hilbert linear conjugation problem for a holomorphic vector-valued function with two components. This problem is in turn reduced to a system of integral equations on the half-line, and analytic properties of solutions of this system are studied in the Mellin images in Banach spaces of holomorphic functions with fixed poles. We study the structure of the canonical matrix of solutions of this Hilbert problem at the singular points, along with its asymptotic behaviour for large values of the reduced spectral parameter. The investigation of the resulting characteristic equations yields three terms (four in the positive self-adjoint case) of the asymptotic expansions of the eigenvalues, along with estimates of the remainders.
@article{IM2_2003_67_4_a2,
     author = {B. V. Pal'tsev},
     title = {Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels},
     journal = {Izvestiya. Mathematics },
     pages = {695--779},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a2/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 695
EP  - 779
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a2/
LA  - en
ID  - IM2_2003_67_4_a2
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels
%J Izvestiya. Mathematics 
%D 2003
%P 695-779
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a2/
%G en
%F IM2_2003_67_4_a2
B. V. Pal'tsev. Asymptotic behaviour of the spectra of integral convolution operators on a~finite interval with homogeneous polar kernels. Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 695-779. http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a2/

[1] Paltsev B. V., “Asimptotika spektra i sobstvennykh funktsii integralnykh operatorov svertki na konechnom intervale s odnorodnym preobrazovaniem Fure yadra”, DAN SSSR, 218:1 (1974), 28–31 | MR | Zbl

[2] Rosenblatt M., “Some results on the asymptotic behaviour of eiganvalues for a class of integral equations with translation kernels”, J. Math. Mech., 12:4 (1963), 619–628 | MR | Zbl

[3] Widom H., “Asymptotic behaviour of the eigenvalues of certain integral equations, I”, Trans. Amer. Math. Soc., 109:2 (1963), 278–295 | DOI | MR | Zbl

[4] Widom H., “Asymptotic behaviour of the eigenvalues of certain integral equations, II”, Arch. Rat. Mech. Anal., 17:3 (1964), 215–229 | DOI | MR | Zbl

[5] Evgrafov M. A., “Ob odnom integralnom preobrazovanii i ego primenenii k otsenke chisla sobstvennykh znachenii nekotorykh integralnykh operatorov”, Tr. Mosk. matem. ob-va, 17, 1967, 273–292 | MR | Zbl

[6] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra slabo polyarnykh operatorov”, Izv. AN SSSR. Ser. matem., 34:5 (1970), 1142–1158 | MR | Zbl

[7] Mordasova G. M., “Asimptotika sobstvennykh znachenii lineinogo integralnogo uravneniya s razryvnym yadrom”, DAN SSSR, 42:5 (1962), 1023–1025

[8] Zakhar-Itkin M. Kh., “O roste sobstvennykh chisel lineinogo integralnogo uravneniya”, Vestn. MGU. Matematika, mekhanika, 1966, no. 4, 3–19 | Zbl

[9] Paltsev B. V., “Asimptoticheskoe povedenie sobstvennykh znachenii operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny”, DAN SSSR, 194:4 (1970), 774–777 | Zbl

[10] Paltsev B. V., “Razlozhenie po sobstvennym funktsiyam integralnykh operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny. “Slabo” nesamosopryazhennye regulyarnye yadra”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 591–634 | MR | Zbl

[11] Ukai S., “Asymptotic distribution of eigenvalues of the kernel in the Kirkwood–Riseman integral equation”, J. Math. Phys., 12:1 (1971), 83–92 | DOI | MR | Zbl

[12] Gakhov F. D., “Kraevaya zadacha Rimana dlya sistem $n$ par funktsii”, UMN, 7:4 (1952), 3–54 | MR | Zbl

[13] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970 | MR | Zbl

[14] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[15] Gokhberg I. Ts., Krein M. G., “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, UMN, 13:2 (1958), 3–73 | MR

[16] Ganin M. P., “Ob odnom integralnom uravnenii Fredgolma s yadrom, zavisyaschim ot raznosti argumentov”, Izv. vuzov. “Matematika”, 13:2 (1963), 31–34 | MR

[17] Shubin M. A., “Faktorizatsiya zavisyaschikh ot parametra matrits-funktsii v normirovannykh koltsakh i svyazannye s nei voprosy teorii neterovskikh operatorov”, Matem. sb., 73:4 (1967), 610–629 | MR | Zbl

[18] Shubin M. A., “Faktorizatsiya matrits, zavisyaschikh ot parametra i ellipticheskie uravneniya v poluprostranstve”, Matem. sb., 85:1 (1971), 65–84 | MR | Zbl

[19] Kopson E., Asimptoticheskie razlozheniya, Mir, M., 1966

[20] Khirshman I. I., Uidder D. V., Preobrazovaniya tipa svertki, IL, M., 1958

[21] Khvedelidze B. V., “Lineinye razryvnye granichnye zadachi teorii funktsii, singulyarnye integralnye uravneniya i nekotorye ikh prilozheniya”, Tr. Tbilis. matem. in-ta, XXIII (1956), 3–158

[22] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.–L., 1948

[23] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza. Ch. II. Transtsendentnye funktsii, Fizmatgiz, M., 1963

[24] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973

[25] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[26] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. II, Nauka, M., 1976 | MR

[27] Kon Dzh. Dzh., Nirenberg L., “Algebra psevdodifferentsialnykh operatorov”, Psevdodifferentsialnye operatory, Mir, M., 1967, 9–62 | MR

[28] Paltsev B. V., “O zadache Dirikhle dlya odnogo psevdodifferentsialnogo uravneniya, vstrechayuschegosya v teorii sluchainykh protsessov”, Izv. AN SSSR. Ser. matem., 41:6 (1977), 1348–1387 | MR | Zbl

[29] Paltsev B. V., “Uravneniya svertki na konechnom intervale dlya odnogo klassa simvolov, imeyuschikh stepennuyu asimptotiku na beskonechnosti”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 322–393 | MR

[30] Paltsev B. V., “Obobschenie metoda Vinera–Khopfa dlya uravnenii svertki na konechnom intervale s simvolami, imeyuschimi stepennuyu asimptotiku na beskonechnosti”, Matem. sb., 113:3 (1980), 355–399 | MR | Zbl

[31] Paltsev B. V., “Ob odnom metode postroeniya kanonicheskoi matritsy reshenii zadachi Gilberta, voznikayuschei pri reshenii uravnenii svertki na konechnom intervale”, Izv. AN SSSR. Ser. matem., 45:6 (1981), 1332–1390 | MR | Zbl

[32] Paltsev B. V., “O kanonicheskoi matritse reshenii zadachi lineinogo sopryazheniya s kusochno-nepreryvnym matrichnym koeffitsientom na elementarnoi kusochno-gladkoi krivoi”, DAN SSSR, 297:5 (1987), 1054–1058 | MR

[33] Paltsev B. V., “Ob usloviyakh, obespechivayuschikh nepreryvnost vplot do kontura i stepennoe povedenie v okrestnostyakh uzlovykh tochek reshenii odnorodnoi zadachi lineinogo sopryazheniya s kusochno-nepreryvnym matrichnym koeffitsientom”, DAN SSSR, 299:3 (1988), 558–562 | MR | Zbl

[34] Khvedelidze B. V., “Metod integralov tipa Koshi v razryvnykh granichnykh zadachakh teorii golomorfnykh funktsii odnoi kompleksnoi peremennoi”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 7, VINITI, M., 1975, 5–162