Almost Kählerian manifolds of hyperbolic type
Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 655-694.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of completely real submanifolds of almost Kählerian manifolds of hyperbolic type. The main aim is the study of the geometry of the manifold of non-degenerate null pairs of the real projective space. We obtain a complete classification of its totally geodesic Lagrangian submanifolds and describe their construction.
@article{IM2_2003_67_4_a1,
     author = {V. F. Kirichenko and V. V. Konnov},
     title = {Almost {K\"ahlerian} manifolds of hyperbolic type},
     journal = {Izvestiya. Mathematics },
     pages = {655--694},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a1/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - V. V. Konnov
TI  - Almost Kählerian manifolds of hyperbolic type
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 655
EP  - 694
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a1/
LA  - en
ID  - IM2_2003_67_4_a1
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A V. V. Konnov
%T Almost Kählerian manifolds of hyperbolic type
%J Izvestiya. Mathematics 
%D 2003
%P 655-694
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a1/
%G en
%F IM2_2003_67_4_a1
V. F. Kirichenko; V. V. Konnov. Almost Kählerian manifolds of hyperbolic type. Izvestiya. Mathematics , Tome 67 (2003) no. 4, pp. 655-694. http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a1/

[1] Kirichenko V. F., “Obobschennaya ermitova geometriya v kasatelnom rassloenii”, Izv. AN EstSSR. Fizika, matematika, 33 (1984), 363–368 | MR | Zbl

[2] Kirichenko V. F., “Kasatelnoe rassloenie s tochki zreniya obobschennoi ermitovoi geometrii”, Izv. vuzov. Matematika, 6 (1984), 50–58 | MR

[3] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981

[4] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Problemy geometrii, 18, VINITI AN SSSR, M., 1986, 25–71 | MR

[5] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, II”, Geometriae Dedicata, 52 (1994), 53–85 | DOI | MR | Zbl

[6] Dube K. K., “On almost hyperbolic Hermitian manifolds”, Ann. Univ. Timishoara. Ser. Stinite Mat., 11 (1973), 47–54 | MR | Zbl

[7] Libermann P., “Sur le problèmé d'equivalence di certaines structure infinitesimales”, Ann. di Matematica, 36 (1951), 247–261

[8] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pure ed Appl., 123:4 (1980), 35–58 | DOI | MR | Zbl

[9] Blair D., “Contact manifolds in geometry”, Lecture Notes in Math., 509, 1976, 1–145 | MR

[10] Kobayashi S., “Principal fibre bundle with the 1-dimensional toroidal group”, Tôhoku Math. J., 8 (1956), 29–45 | DOI | MR | Zbl

[11] Akivis M. A, Goldberg V. V., Conformal differential geometry and its generalizations, John Wiley Sons Inc., N. Y.–Chichester–Brisbane–Toronto–Singapure, 1996 | MR | Zbl

[12] Akivis M. A., “O vpolne izotropnykh podmnogoobraziyakh chetyrekhmernoi psevdokonformnoi struktury”, Izv. vuzov. Matematika, 1983, no. 1, 3–11 | MR

[13] Konnov V. V., Differentsialnaya geometriya nekotorykh klassov algebraicheskikh mnogoobrazii, SamGPU, Samara, 1998 | Zbl

[14] Akivis M. A., Konnov V. V., “Nekotorye lokalnye aspekty teorii konformnykh struktur”, UMN, 48:1(289) (1993), 3–40 | MR | Zbl