Almost Kählerian manifolds of hyperbolic type
Izvestiya. Mathematics, Tome 67 (2003) no. 4, pp. 655-694 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the geometry of completely real submanifolds of almost Kählerian manifolds of hyperbolic type. The main aim is the study of the geometry of the manifold of non-degenerate null pairs of the real projective space. We obtain a complete classification of its totally geodesic Lagrangian submanifolds and describe their construction.
@article{IM2_2003_67_4_a1,
     author = {V. F. Kirichenko and V. V. Konnov},
     title = {Almost {K\"ahlerian} manifolds of hyperbolic type},
     journal = {Izvestiya. Mathematics},
     pages = {655--694},
     year = {2003},
     volume = {67},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a1/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - V. V. Konnov
TI  - Almost Kählerian manifolds of hyperbolic type
JO  - Izvestiya. Mathematics
PY  - 2003
SP  - 655
EP  - 694
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a1/
LA  - en
ID  - IM2_2003_67_4_a1
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A V. V. Konnov
%T Almost Kählerian manifolds of hyperbolic type
%J Izvestiya. Mathematics
%D 2003
%P 655-694
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a1/
%G en
%F IM2_2003_67_4_a1
V. F. Kirichenko; V. V. Konnov. Almost Kählerian manifolds of hyperbolic type. Izvestiya. Mathematics, Tome 67 (2003) no. 4, pp. 655-694. http://geodesic.mathdoc.fr/item/IM2_2003_67_4_a1/

[1] Kirichenko V. F., “Obobschennaya ermitova geometriya v kasatelnom rassloenii”, Izv. AN EstSSR. Fizika, matematika, 33 (1984), 363–368 | MR | Zbl

[2] Kirichenko V. F., “Kasatelnoe rassloenie s tochki zreniya obobschennoi ermitovoi geometrii”, Izv. vuzov. Matematika, 6 (1984), 50–58 | MR

[3] Kobayashi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981

[4] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Problemy geometrii, 18, VINITI AN SSSR, M., 1986, 25–71 | MR

[5] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, II”, Geometriae Dedicata, 52 (1994), 53–85 | DOI | MR | Zbl

[6] Dube K. K., “On almost hyperbolic Hermitian manifolds”, Ann. Univ. Timishoara. Ser. Stinite Mat., 11 (1973), 47–54 | MR | Zbl

[7] Libermann P., “Sur le problèmé d'equivalence di certaines structure infinitesimales”, Ann. di Matematica, 36 (1951), 247–261

[8] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pure ed Appl., 123:4 (1980), 35–58 | DOI | MR | Zbl

[9] Blair D., “Contact manifolds in geometry”, Lecture Notes in Math., 509, 1976, 1–145 | MR

[10] Kobayashi S., “Principal fibre bundle with the 1-dimensional toroidal group”, Tôhoku Math. J., 8 (1956), 29–45 | DOI | MR | Zbl

[11] Akivis M. A, Goldberg V. V., Conformal differential geometry and its generalizations, John Wiley Sons Inc., N. Y.–Chichester–Brisbane–Toronto–Singapure, 1996 | MR | Zbl

[12] Akivis M. A., “O vpolne izotropnykh podmnogoobraziyakh chetyrekhmernoi psevdokonformnoi struktury”, Izv. vuzov. Matematika, 1983, no. 1, 3–11 | MR

[13] Konnov V. V., Differentsialnaya geometriya nekotorykh klassov algebraicheskikh mnogoobrazii, SamGPU, Samara, 1998 | Zbl

[14] Akivis M. A., Konnov V. V., “Nekotorye lokalnye aspekty teorii konformnykh struktur”, UMN, 48:1(289) (1993), 3–40 | MR | Zbl