Birationally rigid iterated Fano double covers
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 555-596

Voir la notice de l'article provenant de la source Math-Net.Ru

Iterating the procedure of making a double cover over a given variety, we construct large families of smooth higher-dimensional Fano varieties of index 1. These varieties can be realized as complete intersections in various weighted projective spaces. We prove that a generic variety of these families is birationally superrigid. In particular, it admits no non-trivial structure of a fibration into rationally connected (or even uniruled) varieties, it is non-rational, and its groups of birational and biregular self-maps coincide.
@article{IM2_2003_67_3_a6,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid iterated {Fano} double covers},
     journal = {Izvestiya. Mathematics },
     pages = {555--596},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a6/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid iterated Fano double covers
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 555
EP  - 596
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a6/
LA  - en
ID  - IM2_2003_67_3_a6
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid iterated Fano double covers
%J Izvestiya. Mathematics 
%D 2003
%P 555-596
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a6/
%G en
%F IM2_2003_67_3_a6
A. V. Pukhlikov. Birationally rigid iterated Fano double covers. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 555-596. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a6/