Birationally rigid iterated Fano double covers
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 555-596.

Voir la notice de l'article provenant de la source Math-Net.Ru

Iterating the procedure of making a double cover over a given variety, we construct large families of smooth higher-dimensional Fano varieties of index 1. These varieties can be realized as complete intersections in various weighted projective spaces. We prove that a generic variety of these families is birationally superrigid. In particular, it admits no non-trivial structure of a fibration into rationally connected (or even uniruled) varieties, it is non-rational, and its groups of birational and biregular self-maps coincide.
@article{IM2_2003_67_3_a6,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid iterated {Fano} double covers},
     journal = {Izvestiya. Mathematics },
     pages = {555--596},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a6/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid iterated Fano double covers
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 555
EP  - 596
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a6/
LA  - en
ID  - IM2_2003_67_3_a6
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid iterated Fano double covers
%J Izvestiya. Mathematics 
%D 2003
%P 555-596
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a6/
%G en
%F IM2_2003_67_3_a6
A. V. Pukhlikov. Birationally rigid iterated Fano double covers. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 555-596. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a6/

[1] Corti A., “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl

[2] Corti A., “Singularities of linear systems and 3-fold birational geometry”, Explicit Birational Geometry of Threefolds, London Math. Soc. Lect. Note Series, 281, Cambridge University Press, Cambridge, 2000, 259–312 | MR | Zbl

[3] Corti A., Mella M., Birational geometry of terminal quartic 3-folds, I, E-print math.AG/0102096 | MR

[4] Corti A., Pukhlikov A., Reid M., “Fano 3-fold hypersurfaces”, Explicit Birational Geometry of Threefolds, London Math. Soc. Lect. Note Series, 281, Cambridge University Press, Cambridge, 2000, 175–258 | MR | Zbl

[5] Corti A., Reid M., “Foreword to “Explicit Birational Geometry of Threefolds””, London Math. Soc. Lect. Note Series, 281, 2000, 1–20 | Zbl

[6] Cheltsov I. A., “Logkanonicheskie porogi na giperpoverkhnostyakh”, Matem. sb., 192:8 (2001), 155–172 | MR | Zbl

[7] Park Dzh., Cheltsov I. A., “Globalnye logkanonicheskie porogi i obobschennye tochki Ekkarta”, Matem. sb., 193:5 (2002), 149–160 | MR | Zbl

[8] Esnault H., Viehweg E., Lectures on vanishing theorems, DMV-Seminar, 20, Birkhäuser, 1992 | MR | Zbl

[9] Fano G., “Sopra alcune varieta algebriche a tre dimensioni aventi tutti i generi nulli”, Atti Acc. Torino, 43 (1908), 973–977

[10] Fano G., “Osservazioni sopra alcune varieta non razionali aventi tutti i generi nulli”, Atti Acc. Torino, 50 (1915), 1067–1072 | Zbl

[11] Fano G., “Nouve ricerche sulle varieta algebriche a tre dimensioni a curve-sezioni canoniche”, Comm. Rent. Ac. Sci., 11 (1947), 635–720 | MR | Zbl

[12] Fulton W., Intersection Theory, Springer-Verlag, N. Y., 1984 | MR | Zbl

[13] Grinenko M. M., “Biratsionalnye avtomorfizmy trekhmernogo dvoinogo konusa”, Matem. sb., 189:7 (1998), 37–52 | MR | Zbl

[14] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepeni 1 i 2”, Matem. sb., 191:5 (2000), 17–38 | MR | Zbl

[15] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhniki. Sovr. probl. matem., 12, VINITI, M., 1979, 159–235 | MR

[16] Iskovskikh V. A., “Prostoe dokazatelstvo neratsionalnosti trekhmernoi kvartiki”, Matem. zametki, 65:5 (1999), 667–673 | MR | Zbl

[17] Iskovskikh V. A., “Biratsionalnaya zhestkost giperpoverkhnostei Fano v ramkakh teorii Mori”, UMN, 56:2 (2001), 3–86 | MR | Zbl

[18] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86:1 (1971), 140–166 | MR | Zbl

[19] Iskovskikh V. A., Pukhlikov A. V., “Birational automorphisms of multi-dimensional algebraic varieties”, J. Math. Sci., 82 (1996), 3528–3613 | DOI | MR | Zbl

[20] Kollár J. et al., Flips and Abundance for Algebraic Threefolds, Asterisque, 211, 1993 | MR

[21] Kawamata Y., “A generalization of Kodaira–Ramanujam's vanishing theorem”, Math. Ann., 261 (1982), 43–46 | DOI | MR | Zbl

[22] Manin Yu. I., “Rational surfaces over perfect fields”, Publ. Math. IHES, 30 (1966), 55–113 | MR

[23] Manin Yu. I., “Ratsionalnye poverkhnosti nad sovershennymi polyami, II”, Matem. sb., 72 (1967), 161–192 | MR | Zbl

[24] Manin Yu. I., Kubicheskie formy. Algebra, geometriya, arifmetika, Nauka, M., 1972 | MR

[25] Noether M., “Über Flächen welche Schaaren rationaler Curven besitzen”, Math. Ann., 3 (1871), 161–227 | DOI

[26] Pukhlikov A. V., “Birational isomorphisms of four-dimensional quintics”, Invent. Math., 87 (1987), 303–329 | DOI | MR | Zbl

[27] Pukhlikov A. V., “Biratsionalnye avtomorfizmy dvoinogo prostranstva i dvoinoi kvadriki”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 229–239 | MR

[28] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernoi kvartiki s prosteishei osobennostyu”, Matem. sb., 135:4 (1988), 472–496 | Zbl

[29] Pukhlikov A. V., “Zamechanie o teoreme V. A. Iskovskikh i Yu. I. Manina o trekhmernoi kvartike”, Tr. Matem. in-ta im. V. A. Steklova RAN, 208 (1995), 278–289 | MR | Zbl

[30] Pukhlikov A. V., “Essentials of the method of maximal singularities”, Explicit Birational Geometry of Threefolds, London Math. Soc. Lect. Note Series, 281, Cambridge University Press, Cambridge, 2000, 73–100 | MR | Zbl

[31] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl

[32] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[33] Pukhlikov A. V., “Biratsionalno zhestkie dvoinye giperpoverkhnosti Fano”, Matem. sb., 191:6 (2000), 101–126 | MR | Zbl

[34] Pukhlikov A. V., “Biratsionalno zhestkie rassloeniya Fano”, Izv. RAN. Ser. matem., 64:3 (2000), 131–150 | MR | Zbl

[35] Pukhlikov A. V., “Birationally rigid Fano complete intersections”, Crelle J. für die reine und angew. Math., 541 (2001), 55–79 | DOI | MR | Zbl

[36] Pukhlikov A. V., “Biratsionalno zhestkie giperpoverkhnosti Fano s izolirovannymi osobennostyami”, Matem. sb., 193:3 (2002), 135–160 | MR

[37] Pukhlikov A. V., “Biratsionalno zhestkie giperpoverkhnosti Fano”, Izv. RAN. Ser. matem., 66:6 (2002), 159–186 | MR | Zbl

[38] Reid M., Birational geometry of 3-folds according to Sarkisov, Preprint, Warwick, 1991

[39] Sarkisov V. G., “Biratsionalnye avtomorfizmy rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 918–945 | MR | Zbl

[40] Sarkisov V. G., “O strukturakh rassloenii na koniki”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 371–408 | MR | Zbl

[41] Sarkisov V. G., Birational maps of standard $\mathbb Q$-Fano fibrations, Preprint, Kurchatov Institute of Atomic Energy, 1989

[42] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl

[43] Sobolev I. V., “Ob odnoi serii biratsionalno zhestkikh mnogoobrazii s puchkom giperpoverkhnostei Fano”, Matem. sb., 192:10 (2001), 123–130 | MR | Zbl

[44] Sobolev I. V., “Biratsionalnye avtomorfizmy odnogo klassa mnogoobrazii, rassloennykh na kubicheskie poverkhnosti”, Izv. RAN. Ser. matem., 66:1 (2002), 203–224 | MR | Zbl

[45] Viehweg E., “Vanishing theorems”, Crelle J. für die reine und angew. Math., 335 (1982), 1–8 | MR | Zbl