On braid monodromy factorizations
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 499-534

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and develop a language of semigroups over the braid groups to study the braid monodromy factorizations (bmf's) of plane algebraic curves and other related objects. As an application, we give a new proof of Orevkov's theorem on the realization of bmf's over a disc by algebraic curves and show that the complexity of such a realization cannot be bounded in terms of the types of factors of the bmf. We also prove that the type of a bmf distinguishes Hurwitz curves with singularities of inseparable type up to $H$-isotopy and $J$-holomorphic cuspidal curves in $\mathbb{CP}^2$ up to symplectic isotopy.
@article{IM2_2003_67_3_a4,
     author = {V. M. Kharlamov and Vik. S. Kulikov},
     title = {On braid monodromy factorizations},
     journal = {Izvestiya. Mathematics },
     pages = {499--534},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a4/}
}
TY  - JOUR
AU  - V. M. Kharlamov
AU  - Vik. S. Kulikov
TI  - On braid monodromy factorizations
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 499
EP  - 534
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a4/
LA  - en
ID  - IM2_2003_67_3_a4
ER  - 
%0 Journal Article
%A V. M. Kharlamov
%A Vik. S. Kulikov
%T On braid monodromy factorizations
%J Izvestiya. Mathematics 
%D 2003
%P 499-534
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a4/
%G en
%F IM2_2003_67_3_a4
V. M. Kharlamov; Vik. S. Kulikov. On braid monodromy factorizations. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 499-534. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a4/