On braid monodromy factorizations
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 499-534.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and develop a language of semigroups over the braid groups to study the braid monodromy factorizations (bmf's) of plane algebraic curves and other related objects. As an application, we give a new proof of Orevkov's theorem on the realization of bmf's over a disc by algebraic curves and show that the complexity of such a realization cannot be bounded in terms of the types of factors of the bmf. We also prove that the type of a bmf distinguishes Hurwitz curves with singularities of inseparable type up to $H$-isotopy and $J$-holomorphic cuspidal curves in $\mathbb{CP}^2$ up to symplectic isotopy.
@article{IM2_2003_67_3_a4,
     author = {V. M. Kharlamov and Vik. S. Kulikov},
     title = {On braid monodromy factorizations},
     journal = {Izvestiya. Mathematics },
     pages = {499--534},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a4/}
}
TY  - JOUR
AU  - V. M. Kharlamov
AU  - Vik. S. Kulikov
TI  - On braid monodromy factorizations
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 499
EP  - 534
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a4/
LA  - en
ID  - IM2_2003_67_3_a4
ER  - 
%0 Journal Article
%A V. M. Kharlamov
%A Vik. S. Kulikov
%T On braid monodromy factorizations
%J Izvestiya. Mathematics 
%D 2003
%P 499-534
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a4/
%G en
%F IM2_2003_67_3_a4
V. M. Kharlamov; Vik. S. Kulikov. On braid monodromy factorizations. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 499-534. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a4/

[1] Artal E., Carmona J., Cogolludo J. I., Effective invariants of braid monodromy and topology of plane curves, E-print AG/0105157

[2] Barraud J.-F., “Nodal symplectic spheres in $\mathbb C\mathbb P^2$ with positive self-intersection”, Internat. Math. Res. Notices, 1999, no. 9, 495–508 | DOI | MR | Zbl

[3] Ben-Itzhak T., Teicher M., Properties of Hurwitz equivalence in the braid group of order $n$, E-print AG/0103194 | MR

[4] Brieskorn E., Knörrer H., Plane algebraic curves, Birkhäuser Verlag, Basel–Boston–Stuttgart, 1986 | MR | Zbl

[5] Brusotti L., “Sulla “piccola variazione” di una curva piana algebrica reali”, Rend. Rom. Acc. Lincei, 30:5 (1921), 375–379 | Zbl

[6] Chisini O., “Una suggestiva rapresentazione reale per le curve algebriche piane”, Rend. Ist. Lombardo. II, 66 (1933), 1141–1155 | Zbl

[7] Chisini O., “Courbes de diramation des plans multiples et tresses algébriques”, Deuxième Colloque de Géométrie Algébrique, Masson Cie, Paris, 1952, 11–27 | MR

[8] Garside F. A., “The braid group and other groups”, Quart. J. Math. Oxford, 20:2 (1969), 235–254 | DOI | MR | Zbl

[9] Gromov M., “Pseudoholomorphic curves in symplectic manifolds”, Invent. Math., 82 (1985), 307–347 | DOI | MR | Zbl

[10] Kharlamov V. M., Kulikov Vik. S., “Diffeomorphisms, isotopies and braid monodromy factorizations of plane cuspidal curves”, C. R. Acad. Sci. Paris. Sér. I. Math., 333 (2001), 855–859 | MR | Zbl

[11] Kulikov Vik. S., Teicher M., “Breid-monodromnye razlozheniya na mnozhiteli i diffeomorfnye tipy”, Izv. RAN. Ser. matem., 64:2 (2000), 89–120 | MR | Zbl

[12] Lalonde F., McDuff D., “The classification of ruled symplectic $4$-manifolds”, Math. Research Letters, 3 (1996), 769–778 | MR | Zbl

[13] Libgober A., “On the homotopy type of the complement to plane algebraic curves”, J. für die reine und angewandte Math., 367 (1986), 103–114 | MR | Zbl

[14] McDuff D., Polterovich L., “Symplectic packings and algebraic geometry”, Inv. Math., 115 (1994), 405–429 | DOI | MR | Zbl

[15] Micallef M. J., White B., “The structure of branch points in minimal surfaces and in pseudoholomorphic curves”, Ann. of Math., 141:2 (1995), 35–85 | DOI | MR | Zbl

[16] Moishezon B., “Stable branch curves and braid monodromies”, Lecture Notes in Math., 862, 1981, 107–192 | MR | Zbl

[17] Moishezon B., “The arithmetic of braids and a statement of Chisini”, Contemporary Math., 164 (1994), 151–175 | MR | Zbl

[18] Moishezon B., Teicher M., “Braid group technique in complex geometry. I: line arrangements in $\mathbb C\mathbb P^2$”, Contemporary Math., 78 (1988), 425–555 | MR | Zbl

[19] Orevkov S. Yu., “Realizability of a braid monodromy by an algebraic function in a disk”, C. R. Acad. Sci. Paris. Sér. I. Math., 326 (1998), 867–872 | MR

[20] Rudolph L., “Algebraic functions and closed braids”, Topology, 22 (1983), 191–202 | DOI | MR | Zbl

[21] Sikorav J.-C., “Singularities of $J$-holomorphic curves”, Math. Z., 226 (1997), 359–373 | DOI | MR | Zbl

[22] Sikorav J.-C., Dual elliptic structures on $\mathbb C\mathbb P^2$, E-print math.SG/0008234 | MR

[23] Viro O., “Gluing of plane real algebraic curves and constructions of curves of degrees $6$ and $7$”, Lecture Notes in Math., 1060, 1984, 187–200 | MR | Zbl