Classification of exceptional log del Pezzo surfaces with $\delta=1$
Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 461-497.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exceptional log del Pezzo surfaces with $\delta=1$ are classified.
@article{IM2_2003_67_3_a3,
     author = {S. A. Kudryavtsev},
     title = {Classification of exceptional log del {Pezzo} surfaces with $\delta=1$},
     journal = {Izvestiya. Mathematics },
     pages = {461--497},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a3/}
}
TY  - JOUR
AU  - S. A. Kudryavtsev
TI  - Classification of exceptional log del Pezzo surfaces with $\delta=1$
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 461
EP  - 497
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a3/
LA  - en
ID  - IM2_2003_67_3_a3
ER  - 
%0 Journal Article
%A S. A. Kudryavtsev
%T Classification of exceptional log del Pezzo surfaces with $\delta=1$
%J Izvestiya. Mathematics 
%D 2003
%P 461-497
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a3/
%G en
%F IM2_2003_67_3_a3
S. A. Kudryavtsev. Classification of exceptional log del Pezzo surfaces with $\delta=1$. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 461-497. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a3/

[1] Abe T., Classification of exceptional complements: Elliptic curve case, E-print math.AG/9711029

[2] Abe T., Classification of exceptional surface complements, Ph. D. thesis, Johns Hopkins Univ., 1998

[3] Catanese F., Franciosi M., Hulek K., Reid M., “Embeddings of curves and surfaces”, Nagoya Math. J., 154 (1999), 185–220 | MR | Zbl

[4] Furushima M., “Singular del Pezzo surfaces and analytic compactifications of $3$-dimensional complex affine space $\mathbb C^{3}$”, Nagoya Math. J., 104 (1986), 1–28 | MR | Zbl

[5] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[6] Gurjar R. V., Zhang D.-Q., “$\pi_1$ of smooth points of a log del Pezzo surfaces is finite, I”, J. Math. Sci. Univ. Tokyo, 1 (1994), 137–180 | MR | Zbl

[7] Keel S., McKernan J., “Rational curves on quasi-projective surfaces”, Memoirs AMS, 140:669 (1999) | MR

[8] Kollar J. et al., “Flips and abundance for algebraic threefolds”, Astérisque, 211 (1992) | MR

[9] Kollár J., “Log surfaces of general type; some conjectures”, Contemporary Math. AMS, 162 (1994), 261–275 | MR | Zbl

[10] Kollár J., Kovács S., Birational geometry of log surfaces, Preprint, Utah University, 1994 ; http://www.math.princeton.edu/~kollar/FromMyHomePage/BiratLogSurf.ps | MR

[11] Kudryavtsev S. A., “O chisto logterminalnykh razdutiyakh”, Matem. zametki, 69:6 (2001), 892–899 | MR

[12] Kudryavtsev S. A., “Klassifikatsiya trekhmernykh isklyuchitelnykh logkanonicheskikh giperpoverkhnostnykh osobennostei, I”, Izv. RAN. Ser. matem., 66:5 (2002), 83–170 | MR | Zbl

[13] Kudryavtsev S. A., “Klassifikatsiya logpoverkhnostei Enrikvesa s $\delta=2$”, Matem. zametki, 72:5 (2002), 715–722 | MR | Zbl

[14] Kudryavtsev S. A., Klassifikatsiya logpoverkhnostei Enrikvesa s $\delta=1$, E-print math.AG/0207270

[15] Miyanishi M., Zhang D.-Q., “Gorenstein log del Pezzo surfaces of rank one”, J. of Algebra, 118 (1988), 63–84 | DOI | MR | Zbl

[16] Prokhorov Yu. G., Shokurov V. V., “Pervaya osnovnaya teorema o dopolneniyakh: ot globalnogo k lokalnomu”, Izv. AN SSSR. Ser. matem., 65:6 (2001), 99–128 | MR | Zbl

[17] Prokhorov Yu. G., “Lectures on complements on log surfaces”, MSJ Memoirs, 10 (2001) | MR

[18] Reid M., “Young person's guide to canonical singularities”, Proc. Symp. in Pure Math., 46 (1987), 343–416 | MR

[19] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56:1 (1992), 105–203 | MR | Zbl

[20] Shokurov V. V., “Complements on surfaces”, J. of Math. Sci., 102:2 (2000), 3876–3932 | DOI | MR | Zbl