Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_3_a1, author = {M. M. Grinenko}, title = {On a~double cone over {a~Veronese} surface}, journal = {Izvestiya. Mathematics }, pages = {421--438}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a1/} }
M. M. Grinenko. On a~double cone over a~Veronese surface. Izvestiya. Mathematics , Tome 67 (2003) no. 3, pp. 421-438. http://geodesic.mathdoc.fr/item/IM2_2003_67_3_a1/
[1] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepenei 1 i 2”, Matem. sb., 191:5 (2000), 17–38 | MR | Zbl
[2] Grinenko M. M., “O rassloeniyakh na poverkhnosti del Petstso”, Matem. zametki, 69:4 (2001), 550–565 | MR | Zbl
[3] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Itogi nauki i tekhn. Sovr. probl. matem., 12, VINITI, M., 1979, 159–236 | MR
[4] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl
[5] Fedorov I. Yu., “Divizorialnye styagivaniya v trekhmernye $cDv$ tochki”, Matem. sb., 193:7 (2002), 149–160 | MR | Zbl
[6] Khashin S. I., “Biratsionalnye avtomorfizmy dvoinogo konusa Veroneze razmernosti tri”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1984, no. 1, 13–16 | MR | Zbl
[7] Corti A., “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4 (1995), 223–254 | MR | Zbl
[8] Kawakita M., “Divisorial contractions in dimension 3 which contract divisors to smooth points”, Invent. Math., 145:1 (2001), 105–119 | DOI | MR | Zbl
[9] Kawakita M., “Divisorial contractions in dimension 3 which contract divisors to compound $A_1$ points”, Compos. Math., 133:1 (2002), 95–116 | DOI | MR | Zbl
[10] Pukhlikov A. V., “Essentials of the method of maximal singularities”, Explicit birational geometry of 3-folds, London Math. Soc. Lect. Note Ser., 281, Cambridge Univ. Press, Cambridge, 1999, 73–100 | MR