On the convergence exponent of the singular integral in the multi-dimensional analogue of Tarry's problem
Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 405-418
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain upper and lower bounds for the convergence exponent of the singular integral in the many-dimensional analogue of Tarry's problem on the asymptotics of the number of solutions of systems of Diophantine equations. In several cases we establish the exact values of the convergence exponent of the singular integral.
@article{IM2_2003_67_2_a8,
author = {M. A. Chahkiev},
title = {On the convergence exponent of the singular integral in the multi-dimensional analogue of {Tarry's} problem},
journal = {Izvestiya. Mathematics },
pages = {405--418},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a8/}
}
TY - JOUR AU - M. A. Chahkiev TI - On the convergence exponent of the singular integral in the multi-dimensional analogue of Tarry's problem JO - Izvestiya. Mathematics PY - 2003 SP - 405 EP - 418 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a8/ LA - en ID - IM2_2003_67_2_a8 ER -
M. A. Chahkiev. On the convergence exponent of the singular integral in the multi-dimensional analogue of Tarry's problem. Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 405-418. http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a8/