Best $M$-term trigonometric approximations of Besov classes of periodic functions of several variables
Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 265-302

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain order-exact estimates for the best $M$-term trigonometric approximations of the Besov classes $B_{p,\theta}^r$ of periodic functions of several variables in $L_q$ with certain relations between $p$ and $q$.
@article{IM2_2003_67_2_a3,
     author = {A. S. Romanyuk},
     title = {Best $M$-term trigonometric approximations of {Besov} classes of periodic functions of several variables},
     journal = {Izvestiya. Mathematics },
     pages = {265--302},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a3/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Best $M$-term trigonometric approximations of Besov classes of periodic functions of several variables
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 265
EP  - 302
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a3/
LA  - en
ID  - IM2_2003_67_2_a3
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Best $M$-term trigonometric approximations of Besov classes of periodic functions of several variables
%J Izvestiya. Mathematics 
%D 2003
%P 265-302
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a3/
%G en
%F IM2_2003_67_2_a3
A. S. Romanyuk. Best $M$-term trigonometric approximations of Besov classes of periodic functions of several variables. Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 265-302. http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a3/