The argument of the Riemann zeta-function on the critical line
Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 225-264

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a new density theorem for the zeros of the Riemann zeta-function in the critical strip, and apply it to the problem of the number of sign changes of the argument of the zeta-function on almost all short intervals of the critical line.
@article{IM2_2003_67_2_a2,
     author = {M. A. Korolev},
     title = {The argument of the {Riemann} zeta-function on the critical line},
     journal = {Izvestiya. Mathematics },
     pages = {225--264},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a2/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - The argument of the Riemann zeta-function on the critical line
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 225
EP  - 264
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a2/
LA  - en
ID  - IM2_2003_67_2_a2
ER  - 
%0 Journal Article
%A M. A. Korolev
%T The argument of the Riemann zeta-function on the critical line
%J Izvestiya. Mathematics 
%D 2003
%P 225-264
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a2/
%G en
%F IM2_2003_67_2_a2
M. A. Korolev. The argument of the Riemann zeta-function on the critical line. Izvestiya. Mathematics , Tome 67 (2003) no. 2, pp. 225-264. http://geodesic.mathdoc.fr/item/IM2_2003_67_2_a2/