Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 183-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine the order of approximation of real functions of finite smoothness by polynomials with various restrictions: approximation of functions and their derivatives with Hermitian interpolation at the endpoints, one-sided approximation (for example, from above), and assumptions on the coefficients.
@article{IM2_2003_67_1_a9,
     author = {R. M. Trigub},
     title = {Approximation of functions by polynomials with {Hermitian} interpolation and restrictions on the coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {183--206},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a9/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 183
EP  - 206
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a9/
LA  - en
ID  - IM2_2003_67_1_a9
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients
%J Izvestiya. Mathematics 
%D 2003
%P 183-206
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a9/
%G en
%F IM2_2003_67_1_a9
R. M. Trigub. Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 183-206. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a9/

[1] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Nauka, M., 1960

[2] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[3] Gopengauz I. E., “K teoreme A. F. Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Matem. zametki, 1:2 (1967), 163–172 | MR | Zbl

[4] Gopengauz I. E., “Pointwise Estimates of the Hermitian Interpolation”, J. Appr. Theory, 77:1 (1994), 31–41 | DOI | MR | Zbl

[5] Brudnyi Yu. A., “Timans type result on approximation by algebraic polynomials”, Operator Theory. Advances and Applications, 98 (1997), 92–101 | MR | Zbl

[6] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl

[7] Hewitt E., Zuckerman H., “Approximation by polynomials with integral coefficients a reformulation of the Stone–Weierstrass theorem”, Duke Math. J., 26 (1959), 305–324 | DOI | MR | Zbl

[8] Gelfond A. O., “O ravnomernykh priblizheniyakh mnogochlenami s tselymi koeffitsientami”, UMN, 10:1 (1955), 41–65 | MR | Zbl

[9] Trigub R. M., “Priblizhenie funktsii mnogochlenami s tselymi koeffitsientami”, Izv.AN SSSR. Ser. matem., 26:2 (1962), 261–280 | MR | Zbl

[10] Trigub R. M., “Priblizhenie funktsii s diofantovymi usloviyami mnogochlenami s tselymi koeffitsientami”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 2, Naukova dumka, Kiev, 1971, 267–333 | MR

[11] Ferguson B. O., Approximation by Polynomials with Integral Coefficients, Math. Surveys, 17, Amer. Math. Soc., Providence, R. I., 1980 | MR | Zbl

[12] Subkhankulov M. A., Tauberovy teoremy s ostatkom, Nauka, M., 1976 | MR

[13] Toland J. E., “Selp-adjoint operators and cones”, J. London Math. Soc., 53:2 (1996), 167–183 | MR | Zbl

[14] Trigub R. M., “Odnostoronnie i komonotonnye priblizheniya gladkikh funktsii algebraicheskimi polinomami s polozhitelnymi koeffitsientami”, Dokl. RAN, 370:2 (2000), 168–170 | MR | Zbl

[15] Trigub R. M., “Odnostoronnie i komonotonnye priblizheniya algebraicheskimi polinomami s polozhitelnymi koeffitsientami”, Pratsi Institutu matem. NAN Ukraini, 31, In-t matem. NAN Ukraini, Kiiv, 2000, 461–476 | MR | Zbl

[16] Trigub R. M., “Priblizhenie indikatora intervala algebraicheskimi polinomami s ermitovskoi interpolyatsiei v dvukh tochkakh”, Tr. In-ta prikl. mat. i mekh, T. 4, Donetsk, 1999, 186–194 | MR | Zbl