Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2003_67_1_a9, author = {R. M. Trigub}, title = {Approximation of functions by polynomials with {Hermitian} interpolation and restrictions on the coefficients}, journal = {Izvestiya. Mathematics }, pages = {183--206}, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a9/} }
TY - JOUR AU - R. M. Trigub TI - Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients JO - Izvestiya. Mathematics PY - 2003 SP - 183 EP - 206 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a9/ LA - en ID - IM2_2003_67_1_a9 ER -
R. M. Trigub. Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 183-206. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a9/
[1] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Nauka, M., 1960
[2] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl
[3] Gopengauz I. E., “K teoreme A. F. Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Matem. zametki, 1:2 (1967), 163–172 | MR | Zbl
[4] Gopengauz I. E., “Pointwise Estimates of the Hermitian Interpolation”, J. Appr. Theory, 77:1 (1994), 31–41 | DOI | MR | Zbl
[5] Brudnyi Yu. A., “Timans type result on approximation by algebraic polynomials”, Operator Theory. Advances and Applications, 98 (1997), 92–101 | MR | Zbl
[6] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR | Zbl
[7] Hewitt E., Zuckerman H., “Approximation by polynomials with integral coefficients a reformulation of the Stone–Weierstrass theorem”, Duke Math. J., 26 (1959), 305–324 | DOI | MR | Zbl
[8] Gelfond A. O., “O ravnomernykh priblizheniyakh mnogochlenami s tselymi koeffitsientami”, UMN, 10:1 (1955), 41–65 | MR | Zbl
[9] Trigub R. M., “Priblizhenie funktsii mnogochlenami s tselymi koeffitsientami”, Izv.AN SSSR. Ser. matem., 26:2 (1962), 261–280 | MR | Zbl
[10] Trigub R. M., “Priblizhenie funktsii s diofantovymi usloviyami mnogochlenami s tselymi koeffitsientami”, Metricheskie voprosy teorii funktsii i otobrazhenii, no. 2, Naukova dumka, Kiev, 1971, 267–333 | MR
[11] Ferguson B. O., Approximation by Polynomials with Integral Coefficients, Math. Surveys, 17, Amer. Math. Soc., Providence, R. I., 1980 | MR | Zbl
[12] Subkhankulov M. A., Tauberovy teoremy s ostatkom, Nauka, M., 1976 | MR
[13] Toland J. E., “Selp-adjoint operators and cones”, J. London Math. Soc., 53:2 (1996), 167–183 | MR | Zbl
[14] Trigub R. M., “Odnostoronnie i komonotonnye priblizheniya gladkikh funktsii algebraicheskimi polinomami s polozhitelnymi koeffitsientami”, Dokl. RAN, 370:2 (2000), 168–170 | MR | Zbl
[15] Trigub R. M., “Odnostoronnie i komonotonnye priblizheniya algebraicheskimi polinomami s polozhitelnymi koeffitsientami”, Pratsi Institutu matem. NAN Ukraini, 31, In-t matem. NAN Ukraini, Kiiv, 2000, 461–476 | MR | Zbl
[16] Trigub R. M., “Priblizhenie indikatora intervala algebraicheskimi polinomami s ermitovskoi interpolyatsiei v dvukh tochkakh”, Tr. In-ta prikl. mat. i mekh, T. 4, Donetsk, 1999, 186–194 | MR | Zbl