Tangential boundary values of Laplace transforms. Applications to Muntz--Szasz type approximation
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 161-181

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Laplace transforms (LT) of functions in $L^q(\mathbb R_+)$, $1$, with a slowly varying weight. We prove that if the weight satisfies certain conditions, then each LT of this class has tangential boundary values almost everywhere on the imaginary axis, and the structure of the corresponding neighbourhoods depends on the weight only. This result is applied to distinguish a wide class of weighted $L^p$ spaces on the half-line such that the Szasz condition is not necessary for the completeness of the system $\exp(-\lambda_n t)$ in these spaces.
@article{IM2_2003_67_1_a8,
     author = {A. M. Sedletskii},
     title = {Tangential boundary values of {Laplace} transforms. {Applications} to {Muntz--Szasz} type approximation},
     journal = {Izvestiya. Mathematics },
     pages = {161--181},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a8/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Tangential boundary values of Laplace transforms. Applications to Muntz--Szasz type approximation
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 161
EP  - 181
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a8/
LA  - en
ID  - IM2_2003_67_1_a8
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Tangential boundary values of Laplace transforms. Applications to Muntz--Szasz type approximation
%J Izvestiya. Mathematics 
%D 2003
%P 161-181
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a8/
%G en
%F IM2_2003_67_1_a8
A. M. Sedletskii. Tangential boundary values of Laplace transforms. Applications to Muntz--Szasz type approximation. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 161-181. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a8/