Symplectic structure on a~moduli space of sheaves on the cubic fourfold
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 121-144

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a 10-dimensional symplectic moduli space of torsion sheaves on the cubic 4-fold in the 5-dimensional projective space. It parametrizes the stable rank 2 vector bundles on hyperplane sections of the cubic 4-fold which are obtained by the Serre construction from normal elliptic quintics. The natural projection of this moduli space onto the dual projective 5-space is a Lagrangian fibration. The symplectic structure is closely related (and conjecturally equal) to the quasi-symplectic structure induced by the Yoneda pairing on the moduli space.
@article{IM2_2003_67_1_a6,
     author = {D. G. Markushevich and A. S. Tikhomirov},
     title = {Symplectic structure on a~moduli space of sheaves on the cubic fourfold},
     journal = {Izvestiya. Mathematics },
     pages = {121--144},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a6/}
}
TY  - JOUR
AU  - D. G. Markushevich
AU  - A. S. Tikhomirov
TI  - Symplectic structure on a~moduli space of sheaves on the cubic fourfold
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 121
EP  - 144
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a6/
LA  - en
ID  - IM2_2003_67_1_a6
ER  - 
%0 Journal Article
%A D. G. Markushevich
%A A. S. Tikhomirov
%T Symplectic structure on a~moduli space of sheaves on the cubic fourfold
%J Izvestiya. Mathematics 
%D 2003
%P 121-144
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a6/
%G en
%F IM2_2003_67_1_a6
D. G. Markushevich; A. S. Tikhomirov. Symplectic structure on a~moduli space of sheaves on the cubic fourfold. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 121-144. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a6/