Symplectic structure on a~moduli space of sheaves on the cubic fourfold
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 121-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a 10-dimensional symplectic moduli space of torsion sheaves on the cubic 4-fold in the 5-dimensional projective space. It parametrizes the stable rank 2 vector bundles on hyperplane sections of the cubic 4-fold which are obtained by the Serre construction from normal elliptic quintics. The natural projection of this moduli space onto the dual projective 5-space is a Lagrangian fibration. The symplectic structure is closely related (and conjecturally equal) to the quasi-symplectic structure induced by the Yoneda pairing on the moduli space.
@article{IM2_2003_67_1_a6,
     author = {D. G. Markushevich and A. S. Tikhomirov},
     title = {Symplectic structure on a~moduli space of sheaves on the cubic fourfold},
     journal = {Izvestiya. Mathematics },
     pages = {121--144},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a6/}
}
TY  - JOUR
AU  - D. G. Markushevich
AU  - A. S. Tikhomirov
TI  - Symplectic structure on a~moduli space of sheaves on the cubic fourfold
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 121
EP  - 144
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a6/
LA  - en
ID  - IM2_2003_67_1_a6
ER  - 
%0 Journal Article
%A D. G. Markushevich
%A A. S. Tikhomirov
%T Symplectic structure on a~moduli space of sheaves on the cubic fourfold
%J Izvestiya. Mathematics 
%D 2003
%P 121-144
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a6/
%G en
%F IM2_2003_67_1_a6
D. G. Markushevich; A. S. Tikhomirov. Symplectic structure on a~moduli space of sheaves on the cubic fourfold. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 121-144. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a6/

[1] Beauville A., “Variétés Kaehleriennes dont la première classe de Chern est nulle”, J. Differ. Geom., 18 (1983), 755–782 | MR | Zbl

[2] Beauville A., Donagi R., “La variété des droites d'une hypersurface cubique de dimension 4”, C. R. Acad. Sci. Paris. Ser. I. Math., 301:14 (1985), 703–706 | MR | Zbl

[3] Bottacin F., “Poisson structures on moduli spaces of sheaves over Poisson surfaces”, Invent. Math., 121 (1995), 421–436 | DOI | MR | Zbl

[4] Clemens C. H., Griffiths P. A., “The intermediate Jacobian of the cubic threefold”, Annals of Math., 95 (1972), 281–356 | DOI | MR | Zbl

[5] Donagi R., Markman E., “Spectral covers, algebraically completely integrable Hamiltonian systems, and moduli of bundles”, Integrable systems and quantum groups, CIME Lectures (Italy, June 14–22, 1993), ed. M. Francaviglia, Springer-Verlag, Berlin, 1996, 1–119 | MR | Zbl

[6] Hulek K., “Projective geometry of elliptic curves”, Astérisque, 137 (1986) | MR | Zbl

[7] Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Vieweg, Braunschweig, 1997 | MR | Zbl

[8] Iliev A., Markushevich D., “The Abel–Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14”, Doc. Math., 5 (2000), 23–47 | MR | Zbl

[9] Kobayashi S., “Simple vector bundles over symplectic Kaehler manifolds”, Proc. Japan Acad. Ser. A, 62 (1986), 21–24 | DOI | MR | Zbl

[10] Markushevich D., “Lagrangian families of Jacobians of genus 2 curves”, J. Math. Sciences, 82:1 (1996), 3268–3284 | DOI | MR | Zbl

[11] Markushevich D., Tikhomirov A. S., “The Abel–Jacobi map of a moduli component of vector bundles on the cubic threefold”, J. Alg. Geom., 10 (2001), 37–62 | MR | Zbl

[12] Mukai S., “Symplectic structure of the moduli of sheaves on an abelian or K3 surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[13] O'Grady K. G., “Algebro-geometric analogues of Donaldson's polynomials”, Invent. Math., 107 (1992), 351–395 | DOI | MR | Zbl

[14] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety, I”, Publ. Math. I. H. E. S., 79 (1994), 47–129 | MR | Zbl

[15] Tyurin A. N., “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassmotrenii na poverkhnostyakh $p_g>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–852 | MR | Zbl

[16] Voisin C., “Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes”, Complex Projective Geometry, Cambridge Univ. Press, Cambridge, 1992, 294–303 | MR

[17] Welters G. E., Abel–Jacobi isogenies for certain types of Fano threefolds, Mathematical Centre Tracts, 141, Amsterdam, 1981 | MR | Zbl