Group representation of the Cayley forest and some of its applications
Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 17-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Cayley forests and products of Cayley trees of order $k\geqslant 1$ are represented as subgroups in the free product of $m$ cyclic groups ($m>k$) of order 2. The automorphism groups of these objects are determined. We give a complete description of the sets of translation-invariant and periodic Gibbs measures for the Ising model on a Cayley forest. We construct a new class of limiting Gibbs measures for the inhomogeneous Ising model on a Cayley tree. We find sufficient conditions for random walks in periodic random media on the forest to be never returning provided that the jumps of the walking particle are bounded.
@article{IM2_2003_67_1_a1,
     author = {N. N. Ganikhodzhaev and U. A. Rozikov},
     title = {Group representation of the {Cayley} forest and some of its applications},
     journal = {Izvestiya. Mathematics },
     pages = {17--27},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a1/}
}
TY  - JOUR
AU  - N. N. Ganikhodzhaev
AU  - U. A. Rozikov
TI  - Group representation of the Cayley forest and some of its applications
JO  - Izvestiya. Mathematics 
PY  - 2003
SP  - 17
EP  - 27
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a1/
LA  - en
ID  - IM2_2003_67_1_a1
ER  - 
%0 Journal Article
%A N. N. Ganikhodzhaev
%A U. A. Rozikov
%T Group representation of the Cayley forest and some of its applications
%J Izvestiya. Mathematics 
%D 2003
%P 17-27
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a1/
%G en
%F IM2_2003_67_1_a1
N. N. Ganikhodzhaev; U. A. Rozikov. Group representation of the Cayley forest and some of its applications. Izvestiya. Mathematics , Tome 67 (2003) no. 1, pp. 17-27. http://geodesic.mathdoc.fr/item/IM2_2003_67_1_a1/