Non-local investigation of bifurcations of solutions of non-linear elliptic equations
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1103-1130

Voir la notice de l'article provenant de la source Math-Net.Ru

We justify the projective fibration procedure for functionals defined on Banach spaces. Using this procedure and a dynamical approach to the study with respect to parameters, we prove that there are branches of positive solutions of non-linear elliptic equations with indefinite non-linearities. We investigate the asymptotic behaviour of these branches at bifurcation points. In the general case of equations with $p$-Laplacian we prove that there are upper bounds of branches of positive solutions with respect to the parameter.
@article{IM2_2002_66_6_a1,
     author = {Ya. Sh. Il'yasov},
     title = {Non-local investigation of bifurcations of solutions of non-linear elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {1103--1130},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a1/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - Non-local investigation of bifurcations of solutions of non-linear elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1103
EP  - 1130
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a1/
LA  - en
ID  - IM2_2002_66_6_a1
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T Non-local investigation of bifurcations of solutions of non-linear elliptic equations
%J Izvestiya. Mathematics 
%D 2002
%P 1103-1130
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a1/
%G en
%F IM2_2002_66_6_a1
Ya. Sh. Il'yasov. Non-local investigation of bifurcations of solutions of non-linear elliptic equations. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1103-1130. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a1/