Non-local investigation of bifurcations of solutions of non-linear elliptic equations
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1103-1130.

Voir la notice de l'article provenant de la source Math-Net.Ru

We justify the projective fibration procedure for functionals defined on Banach spaces. Using this procedure and a dynamical approach to the study with respect to parameters, we prove that there are branches of positive solutions of non-linear elliptic equations with indefinite non-linearities. We investigate the asymptotic behaviour of these branches at bifurcation points. In the general case of equations with $p$-Laplacian we prove that there are upper bounds of branches of positive solutions with respect to the parameter.
@article{IM2_2002_66_6_a1,
     author = {Ya. Sh. Il'yasov},
     title = {Non-local investigation of bifurcations of solutions of non-linear elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {1103--1130},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a1/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - Non-local investigation of bifurcations of solutions of non-linear elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1103
EP  - 1130
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a1/
LA  - en
ID  - IM2_2002_66_6_a1
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T Non-local investigation of bifurcations of solutions of non-linear elliptic equations
%J Izvestiya. Mathematics 
%D 2002
%P 1103-1130
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a1/
%G en
%F IM2_2002_66_6_a1
Ya. Sh. Il'yasov. Non-local investigation of bifurcations of solutions of non-linear elliptic equations. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1103-1130. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a1/

[1] Struwe M., Variational Methods, Application to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin–Heidelberg–N. Y., 1996 | MR | Zbl

[2] Alama S., Tarantello G., “Elliptic problems with nonlinearities indefinite in sign”, J. Funct. Anal., 141:1 (1996), 159–215 | DOI | MR | Zbl

[3] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., “Variational methods for indefinite super linear homogeneous elliptic problems”, NoDEA, 2:4 (1995), 553–572 | DOI | MR | Zbl

[4] Del Pino M., “Positive solutions of a semilinear elliptic equation on a compact manifold”, Nonlinear Anal., 22 (1994), 1423–1430 | DOI | MR | Zbl

[5] Drabek P., Pohozaev S. I., “Positive solution for the $p$-Laplacian: application of the fibering method”, Proc. Royl. Soc. Edinburgh. A, 127 (1997), 703–726 | MR | Zbl

[6] Tehrani H. T., “On indefinite superlinear elliptic equations”, Calc. Var., 4 (1996), 139–153 | MR | Zbl

[7] Ilyasov Ya. Sh., “Funktsional Eilera dlya uravnenii s $p$-laplasianom kak funktsiya spektralnogo parametra”, Tr. Matem. in-ta im. V. A. Steklova RAN, 214, 1997, 182–193 | MR | Zbl

[8] Ilyasov Ya. Sh., “Ob odnom neobkhodimom uslovii suschestvovaniya polozhitelnykh reshenii dlya klassa uravnenii s $p$-laplasianom”, Matem. zametki, 66:2 (1999), 312–314 | MR | Zbl

[9] Pokhozhaev S. I., “Ob odnom podkhode k nelineinym uravneniyam”, DAN SSSR, 247 (1979), 1327–1331 | MR | Zbl

[10] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, M., 1975 | MR

[11] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981

[12] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[13] Crandall M. G., Rabinowitz P., “Bifurcation from simple eigenvalues”, J. Funct. Anal., 8 (1971), 321–340 | DOI | MR | Zbl

[14] Prodi G., Ambrosetti A., Analisi Nonlineare, Scuola Normale Superiore, Pisa, 1973 | Zbl

[15] Vainberg M. M., Trenogin V. A., Teoriya vetvlenii reshenii nelineinykh uravnenii, Gostekhizdat, M., 1969

[16] Coleman S., Glazer V., Martin A., “Action minima among solutions to a class of Euclidean scalar field equations”, Commun. Math. Phys., 58:2 (1978), 211–221 | DOI | MR

[17] Lindvist P., “On the equation $\operatorname{div}(|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}u=0$”, Proc. Amer. Math. Society, 109:1 (1990), 157–164 | DOI | MR

[18] Vazquez J. L., Véron L., “Solutions positives d'équations elliptiques semi-linéaires sur des variétés riemanniennes compactes”, C. R. Acad. Sci. Paris, 312 (1991), 811–815 | MR | Zbl

[19] Tolksdorf P., “Regularity for a more general class of quasilinear elliptic equations”, J. Diff. Eq., 51 (1984), 126–150 | DOI | MR | Zbl

[20] Liberman G., “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., 12:11 (1988), 1203–1219 | DOI | MR

[21] Vazquez J. L., “A strong maximum principle for some quasilinear elliptic equations”, Appl. Math. Optim., 12 (1984), 191–202 | DOI | MR | Zbl