The problem of general Radon representation for an arbitrary Hausdorff space.~II
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1087-1101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of general Radon representation is as follows. Given a Hausdorff topological space, find the space of linear functionals that are representable as integrals over all Radon measures. One of the possible solutions of this problem was obtained in Part I of this paper (see [39]). In Part II we establish that the classical theorems of Riesz–Radon and Prokhorov are corollaries of the theorem on general integral Radon representation proved in [39].
@article{IM2_2002_66_6_a0,
     author = {V. K. Zakharov and A. V. Mikhalev},
     title = {The problem of general {Radon} representation for an arbitrary {Hausdorff} {space.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {1087--1101},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a0/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - A. V. Mikhalev
TI  - The problem of general Radon representation for an arbitrary Hausdorff space.~II
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1087
EP  - 1101
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a0/
LA  - en
ID  - IM2_2002_66_6_a0
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A A. V. Mikhalev
%T The problem of general Radon representation for an arbitrary Hausdorff space.~II
%J Izvestiya. Mathematics 
%D 2002
%P 1087-1101
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a0/
%G en
%F IM2_2002_66_6_a0
V. K. Zakharov; A. V. Mikhalev. The problem of general Radon representation for an arbitrary Hausdorff space.~II. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1087-1101. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a0/

[1] Riesz F., “Sur les opérations fonctionelles linéaires”, C.R. Acad. Sci. Paris, 149 (1909), 974–977

[2] Radon J., “Theorie und Anwendangen der absolut additiven Mengenfunktionen”, S.–B. Akad. Wiss. Wien, 122 (1913), 1295–1438 | Zbl

[3] Hausdorff F., Grundzuge der Mengenlehre, Veit, Leipzig, 1914 | Zbl

[4] Saks S., Theory of the integral, Hafner, N.Y., 1937

[5] Saks S., “Integration in abstract metric spaces”, Duke Math. J., 4 (1938), 408–411 | DOI | MR | Zbl

[6] Kakutani S., “Conerete representation of abstract (M) – spaces”, Ann. Math. (2), 42 (1941), 994–1024 | DOI | MR | Zbl

[7] Halmos P. R., Measure Theory, Van Nostrand, Princeton, 1950 | MR | Zbl

[8] Hewitt E., “Integration on locally compact spaces, I”, Univ. of Washington Publ. in Math., 3 (1952), 71–75 | MR

[9] Edwads R. E., “A theory of Radon measures on locally compact spaces”, Acta Math., 89 (1953), 133–164 | DOI | MR

[10] Bourbaki N., Intégration, Chap. I–VI, Hermann, Paris, 1952–1959 | MR

[11] Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-Verlag, Berlin, 1965 | MR

[12] Fremlin D. H., Topological Riesz spaces and measure theory, The University Press, Cambridge, 1974 | MR

[13] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teor. veroyatn. i ee primeneniya, 1 (1956), 177–238 | MR

[14] Topsoe F., Topology and measure, Lect. Notes Math., 133, 1970 | MR | Zbl

[15] Pollard D., Topsoe F., “A unified approach to Riesz type representation theorems”, Studia Math., 54 (1975), 173–190 | MR | Zbl

[16] Topsoe F., “Further results on integral representations”, Studia Math., 55 (1976), 239–245 | MR | Zbl

[17] Topsoe F., “Radon measures, some basic constructions”, Lect. Notes Math., 1033, 1983, 303–311 | MR | Zbl

[18] Anger B., Portenier C., Radon integrals, Birkhäuser, Boston–Berlin, 1992 | MR | Zbl

[19] König H., “The Danielle–Stone–Riesz representation theorem”, Operator theory: advances and applications, 75 (1995), 191–222 | MR

[20] König H., Measure and integration, Springer-Verlag, Berlin, 1997 | MR

[21] Zakharov V. K., Mikhalëv A. V., “Problema Radona dlya regulyarnykh mer na proizvolnom khausdorfovom prostranstve”, Fundam. i prikl. matematika, 3:3 (1997), 801–808 | MR | Zbl

[22] Zakharov V. K., Mikhalëv A. V., “Integralnoe predstavlenie dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Fundam. i prikl. matematika, 3:4 (1997), 1135–1172 | MR | Zbl

[23] Zakharov V. K., Mikhalëv A. V., “Problema integralnogo predstavleniya dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Dokl. RAN, 360:1 (1998), 13–15 | MR | Zbl

[24] Semadeni Z., Banach spaces of continuous functions, Polish Sci. Publ., Warszawa, 1971 | MR | Zbl

[25] Dinculianu N., Vector Measures, Oxford Univ. Press, London–N.Y., 1967

[26] Aleksandrov A. D., “Additive functions in abstract spaces. I–III”, Matem. sb., 8 (1940), 303–348 ; 9 (1941), 563–628 ; 13 (1943), 169–238 | MR | MR

[27] Stone M. N., “Notes on integration. I–IV”, Proc. Nat. Acad. Sci. USA, 34 (1948), 336–342 ; 447–455 ; 483–490 ; 35 (1949), 50–58 | DOI | MR | Zbl | Zbl | DOI | MR | Zbl

[28] Schwartz L., Radon measures on arbitrary topological spaces and cylindrical measures, Oxford Univ. Press, London–N.Y., 1973 | MR | Zbl

[29] Jacobs K., Measure and integral, Academic Press, N.Y., 1978 | MR

[30] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[31] Zakharov V. K., “Funktsionalnoe predstavlenie ravnomernogo popolneniya maksimalnogo i schetno-plotnogo modulei chastnykh modulya nepreryvnykh funktsii”, UMN, 35:4 (1980), 187–188 | MR | Zbl

[32] Zaharov V., “Functional characterization of absolut and Dedekind completion”, Bull. Acad. Polon. Sci. Serie sci. math., 29:5–6 (1981), 293–297 | MR | Zbl

[33] Zakharov V. K., “Svyazi mezhdu rasshireniem Lebega i rasshireniem Borelya pervogo klassa i mezhdu sootvetstvuyuschimi im proobrazami”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 928–956 | Zbl

[34] Hausdorff F., “Über halbstetige Functionen und deren Verallgemeinerung”, Math. Z., 4 (1915), 292–309 | MR

[35] Sierpin'ski W., “Sur les fonctions développables en séries absolument conoergentes de fonctions continues”, Fund. Math., 2 (1921), 15–27 | Zbl

[36] Zaharov V. K., “Alexandrovian cover and Sierpin'skian extension”, Studia Sci. Math. Hung., 24 (1989), 93–117 | MR | Zbl

[37] Zakharov V. K., “Svyaz mezhdu polnym koltsom chastnykh koltsa nepreryvnykh funktsii, regulyarnym popolneniem i rasshireniyami Khausdorfa–Serpinskogo”, UMN, 45:6 (1990), 133–134 | MR | Zbl

[38] Zakharov V. K., “Rasshireniya koltsa nepreryvnykh funktsii, porozhdennye regulyarnym, schetno-delimym i polnym koltsami chastnykh, i sootvetstvuyuschie im proobrazy”, Izv. RAN. Ser. matem., 59:4 (1995), 15–60 | MR | Zbl

[39] Zakharov V. K, Mikhalev A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva”, Izv. RAN. Ser. matem., 63:5 (1999), 37–82 | MR | Zbl