The problem of general Radon representation for an arbitrary Hausdorff space.~II
Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1087-1101
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of general Radon representation is as follows. Given a Hausdorff topological space, find the space of linear functionals that are representable as integrals over all Radon measures. One of the possible solutions of this problem was obtained in Part I of this paper (see [39]). In Part II we establish that the classical theorems of Riesz–Radon and Prokhorov are corollaries of the theorem on general integral Radon representation proved in [39].
@article{IM2_2002_66_6_a0,
author = {V. K. Zakharov and A. V. Mikhalev},
title = {The problem of general {Radon} representation for an arbitrary {Hausdorff} {space.~II}},
journal = {Izvestiya. Mathematics },
pages = {1087--1101},
publisher = {mathdoc},
volume = {66},
number = {6},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a0/}
}
TY - JOUR AU - V. K. Zakharov AU - A. V. Mikhalev TI - The problem of general Radon representation for an arbitrary Hausdorff space.~II JO - Izvestiya. Mathematics PY - 2002 SP - 1087 EP - 1101 VL - 66 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a0/ LA - en ID - IM2_2002_66_6_a0 ER -
V. K. Zakharov; A. V. Mikhalev. The problem of general Radon representation for an arbitrary Hausdorff space.~II. Izvestiya. Mathematics , Tome 66 (2002) no. 6, pp. 1087-1101. http://geodesic.mathdoc.fr/item/IM2_2002_66_6_a0/