The $A_\infty$-structures and differentials of the Adams spectral sequence
Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1057-1086.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using operad methods and functional homology operations, we obtain inductive formulae for the differentials of the Adams spectral sequence of stable homotopy groups of spheres.
@article{IM2_2002_66_5_a5,
     author = {V. A. Smirnov},
     title = {The $A_\infty$-structures and differentials of the {Adams} spectral sequence},
     journal = {Izvestiya. Mathematics },
     pages = {1057--1086},
     publisher = {mathdoc},
     volume = {66},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a5/}
}
TY  - JOUR
AU  - V. A. Smirnov
TI  - The $A_\infty$-structures and differentials of the Adams spectral sequence
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1057
EP  - 1086
VL  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a5/
LA  - en
ID  - IM2_2002_66_5_a5
ER  - 
%0 Journal Article
%A V. A. Smirnov
%T The $A_\infty$-structures and differentials of the Adams spectral sequence
%J Izvestiya. Mathematics 
%D 2002
%P 1057-1086
%V 66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a5/
%G en
%F IM2_2002_66_5_a5
V. A. Smirnov. The $A_\infty$-structures and differentials of the Adams spectral sequence. Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1057-1086. http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a5/

[1] Adams J. F., “On the structure and applications of the Steenrod algebra”, Comm. Math. Helv., 32 (1958), 180–214 | DOI | MR | Zbl

[2] Stasheff J. D., “Homotopy associativity of $H$-spaces”, Trans. Amer. Math. Soc., 108:2 (1963), 275–312 | DOI | MR | Zbl

[3] May J. P., The geometry of iterated loop spaces, Lect. Notes in Math., 271, 1972 | MR | Zbl

[4] Smirnov V. A., “O kotsepnom komplekse topologicheskogo prostranstva”, Matem. sb., 115:1 (1981), 146–158 | MR | Zbl

[5] Smirnov V. A., “Gomotopicheskaya teoriya koalgebr”, Izv. AN SSSR. Ser. matem., 49:6 (1985), 1302–1321 | MR | Zbl

[6] Smirnov V. A., “Vtorichnye gomologicheskie operatsii v gomologiya operady $E$”, Izv. RAN. Ser. matem., 56:2 (1992), 449–468 | MR

[7] Steenrod N. E., “Cohomology invariants of mappings”, Ann. of Math., 50 (1949), 954–988 | DOI | MR | Zbl

[8] Peterson F. P., “Functional cohomology operations”, Trans. Amer. Math. Soc., 86 (1957), 187–197 | DOI | MR

[9] Smirnov V. A., “Funktsionalnye gomologicheskie operatsii i slabyi gomotopicheskii tip”, Matem. zametki, 45:5 (1989), 76–86 | MR

[10] Browder W., “The Kervaire invariant of framed manifolds and its generalizations”, Annals of Math., 90 (1969), 157–186 | DOI | MR | Zbl

[11] Barrat M. G., Jones J. D. S., Mahowald M. E., “The Kervaire invariant and the Hopf invariant”, Lecture Notes in Math., 1286, 1987, 135–173 | MR | Zbl

[12] Bousfield A. K., Kan D. M., “The homotopy spectral sequence of a spaces with coefficients in a ring”, Topology, 11 (1972), 79–106 | DOI | MR

[13] Gugenheim V. K., Lambe L. A., Stasheff J. D., “Perturbation theory in Differential Homological Algebra”, Ill. J. of Math., 35:3 (1991), 357–373 | MR | Zbl

[14] Araki S., Kudo T., “Topology of $H_n$-spaces and $H_n$-squaring operations”, Mem. Fac. Sci. Kyusyu Univ. Ser. A, 10:2 (1956), 85–120 | MR | Zbl

[15] Dyer E., Lashof R. K., “Homology of iterated loop spaces”, Amer. J. of Math., 84:1 (1962), 35–88 | DOI | MR | Zbl

[16] Kadeishvili T. V., “K teorii gomologii rassloennykh prostranstv”, UMN, 35:3 (1980), 183–188 | MR | Zbl