On the closures of orbits of fourth order matrix pencils
Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1047-1055.

Voir la notice de l'article provenant de la source Math-Net.Ru

We state a simple criterion for nilpotency of an $n\times n$ matrix pencil with respect to the action of $\operatorname{SL}_n(\mathbb C)\times \operatorname{SL}_n(\mathbb C) \times\operatorname{SL}_2(\mathbb C)$. We explicitly classify the orbits of matrix pencils for $n=4$ and describe the hierarchy of closures of nilpotent orbits. We also prove that the algebra of invariants of the action of $\operatorname{SL}_n(\mathbb C)\times \operatorname{SL}_n(\mathbb C)\times\operatorname{SL}_2(\mathbb C)$ on $\mathbb C_n\otimes\mathbb C_n\otimes\mathbb C_2$ is naturally isomorphic to the algebra of invariants of binary forms of degree $n$ with respect to the action of $\operatorname{SL}_2(\mathbb C)$.
@article{IM2_2002_66_5_a4,
     author = {D. D. Pervouchine},
     title = {On the closures of orbits of fourth order matrix pencils},
     journal = {Izvestiya. Mathematics },
     pages = {1047--1055},
     publisher = {mathdoc},
     volume = {66},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a4/}
}
TY  - JOUR
AU  - D. D. Pervouchine
TI  - On the closures of orbits of fourth order matrix pencils
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 1047
EP  - 1055
VL  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a4/
LA  - en
ID  - IM2_2002_66_5_a4
ER  - 
%0 Journal Article
%A D. D. Pervouchine
%T On the closures of orbits of fourth order matrix pencils
%J Izvestiya. Mathematics 
%D 2002
%P 1047-1055
%V 66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a4/
%G en
%F IM2_2002_66_5_a4
D. D. Pervouchine. On the closures of orbits of fourth order matrix pencils. Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1047-1055. http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a4/

[1] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravl., 55, VINITI, M., 1989, 137–309 | MR

[2] Pervushin D. D., “Orbity i invarianty standartnogo $\operatorname{SL}_4(\mathbb C)\times \operatorname{SL}_4(\mathbb C)\times \operatorname{SL}_2(\mathbb C)$-modulya”, Izv. RAN. Ser. matem., 64:5 (2001), 133–146 | MR

[3] Gantmacher F. R., The Theory of Matrices, Chelsea, N. Y., 1974

[4] Ja'ja J., “An addendum to Kronecker's theory of pencils”, SIAM J. Appl. Math., 37:3 (1979), 700–712 | DOI | MR | Zbl

[5] Kac V. G., “Some remarks on nilpotent orbits”, J. of Algebra, 64 (1980), 190–213 | DOI | MR | Zbl

[6] Hilbert D., “Über die vollen Invarianten Systeme”, Math. Ann., 42 (1893), 313–373 | DOI | MR