Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_5_a4, author = {D. D. Pervouchine}, title = {On the closures of orbits of fourth order matrix pencils}, journal = {Izvestiya. Mathematics }, pages = {1047--1055}, publisher = {mathdoc}, volume = {66}, number = {5}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a4/} }
D. D. Pervouchine. On the closures of orbits of fourth order matrix pencils. Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 1047-1055. http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a4/
[1] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravl., 55, VINITI, M., 1989, 137–309 | MR
[2] Pervushin D. D., “Orbity i invarianty standartnogo $\operatorname{SL}_4(\mathbb C)\times \operatorname{SL}_4(\mathbb C)\times \operatorname{SL}_2(\mathbb C)$-modulya”, Izv. RAN. Ser. matem., 64:5 (2001), 133–146 | MR
[3] Gantmacher F. R., The Theory of Matrices, Chelsea, N. Y., 1974
[4] Ja'ja J., “An addendum to Kronecker's theory of pencils”, SIAM J. Appl. Math., 37:3 (1979), 700–712 | DOI | MR | Zbl
[5] Kac V. G., “Some remarks on nilpotent orbits”, J. of Algebra, 64 (1980), 190–213 | DOI | MR | Zbl
[6] Hilbert D., “Über die vollen Invarianten Systeme”, Math. Ann., 42 (1893), 313–373 | DOI | MR