Branching geodesics in normed spaces
Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 905-948

Voir la notice de l'article provenant de la source Math-Net.Ru

We study branching extremals of length functionals on normed spaces. This is a natural generalization of the Steiner problem in normed spaces. We obtain criteria for a network to be extremal under deformations that preserve the topology of networks as well as under deformations with splitting. We discuss the connection between locally shortest networks and extremal networks. In the important particular case of the Manhattan plane, we get a criterion for a locally shortest network to be extremal.
@article{IM2_2002_66_5_a1,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Branching geodesics in normed spaces},
     journal = {Izvestiya. Mathematics },
     pages = {905--948},
     publisher = {mathdoc},
     volume = {66},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a1/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Branching geodesics in normed spaces
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 905
EP  - 948
VL  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a1/
LA  - en
ID  - IM2_2002_66_5_a1
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Branching geodesics in normed spaces
%J Izvestiya. Mathematics 
%D 2002
%P 905-948
%V 66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a1/
%G en
%F IM2_2002_66_5_a1
A. O. Ivanov; A. A. Tuzhilin. Branching geodesics in normed spaces. Izvestiya. Mathematics , Tome 66 (2002) no. 5, pp. 905-948. http://geodesic.mathdoc.fr/item/IM2_2002_66_5_a1/