The space of Hermitian triples: local geometry
Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 857-874.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a continuation of [6], [7], [9]. We study the space of Hermitian triples. A necessary condition for basic canonical classes was stated in [9] in terms of Hermitian triples. We give a strengthening of this condition.
@article{IM2_2002_66_4_a7,
     author = {N. A. Tyurin},
     title = {The space of {Hermitian} triples: local geometry},
     journal = {Izvestiya. Mathematics },
     pages = {857--874},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a7/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - The space of Hermitian triples: local geometry
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 857
EP  - 874
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a7/
LA  - en
ID  - IM2_2002_66_4_a7
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T The space of Hermitian triples: local geometry
%J Izvestiya. Mathematics 
%D 2002
%P 857-874
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a7/
%G en
%F IM2_2002_66_4_a7
N. A. Tyurin. The space of Hermitian triples: local geometry. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 857-874. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a7/

[1] Donaldson S. K., “The Seiberg–Witten equation and 4-manifold topology”, BAMS, 33:1 (1996), 45–70 | DOI | MR | Zbl

[2] Donaldson S. K., “Remarks on gauge theory, complex geometry and 4-manifold topology”, Fields medalists lectures, ed. M. Atiayh, Un. Press, Singapore, 1997, 384–403 | MR

[3] Donaldson S. K., Kronheimer P. B., The geometry of 4-manifolds, Oxford University Press, Oxford, 1990 | MR | Zbl

[4] Kronheimer P., Mrowka T., “The genus of embedded surfaces in the projective plane”, Math. Res. Letters, 1 (1994), 797–808 | MR | Zbl

[5] Tyurin N. A., “Instantony i monopoli”, UMN, 57:2 (2002), 85–138 | MR | Zbl

[6] Tyurin N. A., “Abelevy monopoli i kompleksnaya geometriya”, Matem. zametki, 65:3 (1998), 420–428 | MR

[7] Tyurin N., Hermitian triple space as an analogy of hermitian connection spaces, Preprint No 134, MPI, Bonn, 2000

[8] Tyurin N. A., “Abelevy monopoli: sluchai polozhitelnoi razmernosti mnogoobraziya modulei”, Izv. RAN. Ser. matem., 64:1 (2000), 197–210 | MR | Zbl

[9] Tyurin N. A., “Prostranstva ermitovykh troek i uravneniya Zaiberga–Vittena”, Izv. RAN. Ser. matem., 65:1 (2001), 198–224 | MR

[10] Weinstein A., “The local structure of Poisson manifolds”, J. Diff. Geom., 18 (1983), 523–557 | MR | Zbl

[11] Witten E., “Monopoles and four-manifolds”, Math. Res. Letters, 1 (1994), 769–789 | MR

[12] Xiuxiong Chen, The space of Kaehler metrics, E-print DG/0007057 | MR