On the limit behaviour of the spectrum of a model problem for the Orr--Sommerfeld equation with Poiseuille profile
Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 829-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a problem on the limiting behaviour of the spectra of the operators $L(\varepsilon)=i\varepsilon y^{\prime\prime}+x^2y$ with Dirichlet boundary conditions on a finite interval as the positive parameter $\varepsilon$ tends to zero. It is proved that the spectrum is concentrated along three curves in the complex plane. These curves connect a knot-point $\lambda_0$, which lies in the numerical range of the operator, with the points 0, 1 and $-i\infty$. We find uniform (with respect to $\varepsilon$) quasiclassical formulae for the distribution of the eigenvalues along these curves.
@article{IM2_2002_66_4_a6,
     author = {S. N. Tumanov and A. A. Shkalikov},
     title = {On the limit behaviour of the spectrum of a model problem for the {Orr--Sommerfeld} equation with {Poiseuille} profile},
     journal = {Izvestiya. Mathematics },
     pages = {829--856},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a6/}
}
TY  - JOUR
AU  - S. N. Tumanov
AU  - A. A. Shkalikov
TI  - On the limit behaviour of the spectrum of a model problem for the Orr--Sommerfeld equation with Poiseuille profile
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 829
EP  - 856
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a6/
LA  - en
ID  - IM2_2002_66_4_a6
ER  - 
%0 Journal Article
%A S. N. Tumanov
%A A. A. Shkalikov
%T On the limit behaviour of the spectrum of a model problem for the Orr--Sommerfeld equation with Poiseuille profile
%J Izvestiya. Mathematics 
%D 2002
%P 829-856
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a6/
%G en
%F IM2_2002_66_4_a6
S. N. Tumanov; A. A. Shkalikov. On the limit behaviour of the spectrum of a model problem for the Orr--Sommerfeld equation with Poiseuille profile. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 829-856. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a6/

[1] Shkalikov A. A., “Asimptoticheskoe povedenie sobstvennykh znachenii odnoi modelnoi zadachi”, Matem. zametki, 61:6 (1997), 950–954 | MR

[2] Reddy S. G., Schmidt P. J., Henningson D. S., “Pseudospectra of the Orr–Sommerfeld operator”, SIAM J. Appl. Math., 53:1 (1993), 15–47 | DOI | MR | Zbl

[3] Marchenko M. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR

[4] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[5] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[6] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[7] Tumanov S. N., “Model problem for Poiseile profile. Critical spectrum curve”, International Conference “Diff. Equations and related topics” dedicated to the Centenary Annyversary of I. G. Petrovskii, Book of Abstracts, Moscow University, M., 2001, 413–414