Homogenization of elasticity problems on singular structures
Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 299-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogenization theory on periodic networks, junctions and more general singular objects. We show that the homogenized problem typically has a “non-classical” character. This fact is a distinctive feature of homogenization of elasticity problems in contrast to scalar problems. We investigate the properties of Sobolev spaces for various singular structures, prove a non-classical homogenization principle for singular periodic structures of general type and describe a “scaling effect” for model problems with two small geometrical parameters.
@article{IM2_2002_66_2_a2,
     author = {V. V. Zhikov},
     title = {Homogenization of elasticity problems on singular structures},
     journal = {Izvestiya. Mathematics },
     pages = {299--365},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a2/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Homogenization of elasticity problems on singular structures
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 299
EP  - 365
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a2/
LA  - en
ID  - IM2_2002_66_2_a2
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Homogenization of elasticity problems on singular structures
%J Izvestiya. Mathematics 
%D 2002
%P 299-365
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a2/
%G en
%F IM2_2002_66_2_a2
V. V. Zhikov. Homogenization of elasticity problems on singular structures. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 299-365. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a2/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Zhikov S. M., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[3] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990 | Zbl

[4] Braides A., Defranceschi A., Homogenization of Multiple Integrals, Oxford Lecture Series in Mathematics and its Applications, 12, Clarendon Press, Oxford, 1998 | MR | Zbl

[5] Saint Jean Paulin J., Cioranescu D., Homogenization of Reticulated Structures, Applied Mathematical Sciences, 136, Springer-Verlag, Berlin–N. Y., 1999 | MR

[6] Sanchez-Palencia E., Homogenization Techniques for Composite Media, Springer-Verlag, Berlin–N. Y., 1987 | MR | Zbl

[7] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Matem. sb., 187:8 (1996), 3–40 | MR | Zbl

[8] Zhikov V. V., “K tekhnike usredneniya variatsionnykh zadach”, Funkts. analiz i ego prilozh., 33:1 (1999), 14–29 | MR | Zbl

[9] Ciarlet P. G., Mathematical Elasticity. V. II. Theory of Plates, Studies in Mathematics and Applications, 27, Elsevier, Amsterdam–Lausanne–New York–Oxford–Shannon–Tokyo, 1997 | MR

[10] Acerbi E., Butazzo G., Percivale D., “Thin inclusion in linear elasticity: a variational approach”, J. reine angew. Math., 386 (1988), 99–115 | MR | Zbl

[11] Kohn R. V., Vogelius M., “A new model for thin plates with rapidly varying thikness. II: A convergence proof”, Quart. Appl. Math., 43 (1985), 1–22 | MR | Zbl

[12] Mosco U., “Composite Media abd Asymptotic Dirichlet Forms”, J. Funct. Anal., 123 (1994), 368–421 | DOI | MR | Zbl

[13] Nazarov S. A., “Korn's inequalities for functions of spatial bodies and thin rods”, Math. Methods Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] Bouchitté G., Butazzo G., Seppecher P., “Energies with respect to a measure and applications to low dimensional structures”, Calc. Var., 5 (1997), 55–87 | MR

[15] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[16] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl

[17] Zhikov V. V., “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | MR | Zbl