Birational automorphisms of a~class of varieties fibred into cubic surfaces
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 201-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of a variety $V$ that is a divisor of bidegree $(2,3)$ in $\mathbb P^1\times\mathbb P^3$. We calculate the group of its birational automorphisms and prove that $V$ admits no conic bundle structure and is not rational.
@article{IM2_2002_66_1_a8,
     author = {I. V. Sobolev},
     title = {Birational automorphisms of a~class of varieties fibred into cubic surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {201--222},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/}
}
TY  - JOUR
AU  - I. V. Sobolev
TI  - Birational automorphisms of a~class of varieties fibred into cubic surfaces
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 201
EP  - 222
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/
LA  - en
ID  - IM2_2002_66_1_a8
ER  - 
%0 Journal Article
%A I. V. Sobolev
%T Birational automorphisms of a~class of varieties fibred into cubic surfaces
%J Izvestiya. Mathematics 
%D 2002
%P 201-222
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/
%G en
%F IM2_2002_66_1_a8
I. V. Sobolev. Birational automorphisms of a~class of varieties fibred into cubic surfaces. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 201-222. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/

[1] Alekseev V. A., “Usloviya ratsionalnosti trekhmernykh mnogoobraazii s puchkom poverkhnostei del Petstso stepeni 4”, Matem. zametki, 41 (1987), 724–730 | MR

[2] Bardelli F., “Polarized mixed Hodge structures: On irrationality of threefolds via degeneration”, Ann. Mat. Pura et Appl., 137 (1984), 287–369 | DOI | MR | Zbl

[3] Grinenko M. M., “Biratsionalnye avtomorfizmy trekhmernogo dvoinogo konusa”, Matem. sb., 189:7 (1998), 37–52 | MR | Zbl

[4] Grinenko M. M., “Biratsionalnye svoistva puchkov poverkhnostei del Petstso stepeni 1 i 2”, Matem. sb., 191:5 (2000), 17–38 | MR | Zbl

[5] Iskovskikh V. A., Manin Yu. I., “Trekhmernye kvartiki i kontrprimery k probleme Lyurota”, Matem. sb., 86(128):1 (1971), 140–166 | MR | Zbl

[6] Iskovskikh V. A., “O probleme ratsionalnosti dlya trekhmernykh algebraicheskikh mnogoobrazii, rassloennykh na poverkhnosti del Petstso”, Tr. MIAN, 208, Nauka, M., 1995, 128–138 | MR | Zbl

[7] Iskovskikh V. A., “Faktorizatsiya biratsionalnykh otobrazhenii ratsionalnykh poverkhnostei s tochki zreniya teorii Mori”, UMN, 51:4 (1996), 3–72 | MR | Zbl

[8] Manin Yu. I., “Ratsionalnye poverkhnosti nad sovershennymi polyami”, Publ. Math. IHES, 30 (1966), 56–97

[9] Manin Yu. I., Kubicheskie formy: Algebra, geometriya, arifmetika, Nauka, M., 1972 | MR

[10] Pukhlikov A. V., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii s puchkom poverkhnostei del Petstso”, Izv. RAN. Ser. matem., 62:1 (1998), 123–164 | MR | Zbl

[11] Pukhlikov A. V., “Biratsionalno zhestkie rassloeniya Fano”, Izv. RAN. Ser. matem., 64:3 (2000), 131–150 | MR | Zbl

[12] Pukhlikov A. V., “Certain examples of birationally rigid varieties with a pencil of double quadrics”, J. Math. Sci., 94:1 (1999), 986–995 | DOI | MR | Zbl

[13] Pukhlikov A. V., “Birational automorphisms of Fano hypersurfaces”, Invent. math., 134 (1998), 401–426 | DOI | MR | Zbl

[14] Pukhlikov A. V., “Essentials of method of maximal singularities”, Explicit Birational Geometry of 3-folds, Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl

[15] Pukhlikov A. V., “Biratsionalno zhestkie dvoinye giperpoverkhnosti Fano”, Matem. sb., 191:6 (2000), 101–126 | MR | Zbl