Birational automorphisms of a~class of varieties fibred into cubic surfaces
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 201-222

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of a variety $V$ that is a divisor of bidegree $(2,3)$ in $\mathbb P^1\times\mathbb P^3$. We calculate the group of its birational automorphisms and prove that $V$ admits no conic bundle structure and is not rational.
@article{IM2_2002_66_1_a8,
     author = {I. V. Sobolev},
     title = {Birational automorphisms of a~class of varieties fibred into cubic surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {201--222},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/}
}
TY  - JOUR
AU  - I. V. Sobolev
TI  - Birational automorphisms of a~class of varieties fibred into cubic surfaces
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 201
EP  - 222
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/
LA  - en
ID  - IM2_2002_66_1_a8
ER  - 
%0 Journal Article
%A I. V. Sobolev
%T Birational automorphisms of a~class of varieties fibred into cubic surfaces
%J Izvestiya. Mathematics 
%D 2002
%P 201-222
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/
%G en
%F IM2_2002_66_1_a8
I. V. Sobolev. Birational automorphisms of a~class of varieties fibred into cubic surfaces. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 201-222. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/