Birational automorphisms of a~class of varieties fibred into cubic surfaces
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 201-222
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the properties of a variety $V$ that is a divisor of bidegree $(2,3)$ in $\mathbb P^1\times\mathbb P^3$. We calculate the group of its birational automorphisms and prove that $V$ admits no conic bundle structure and is not rational.
@article{IM2_2002_66_1_a8,
author = {I. V. Sobolev},
title = {Birational automorphisms of a~class of varieties fibred into cubic surfaces},
journal = {Izvestiya. Mathematics },
pages = {201--222},
publisher = {mathdoc},
volume = {66},
number = {1},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/}
}
I. V. Sobolev. Birational automorphisms of a~class of varieties fibred into cubic surfaces. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 201-222. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a8/