Invariant subspaces in some function spaces on symmetric spaces.~III
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 165-200

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of closed linear subspaces in some topological vector spaces that consist of functions on the exceptional non-compact symmetric space $M=F_4/{\operatorname{Spin}(9)}$ (the Cayley space) and are invariant under the natural quasi-regular representation of the group $F_4$. The class of function spaces under consideration contains the spaces $C^d(M)$ of $d$-times continuously differentiable functions ($d=0,1,\dots,\infty$) and the spaces of functions of exponential growth on $M$.
@article{IM2_2002_66_1_a7,
     author = {S. S. Platonov},
     title = {Invariant subspaces in some function spaces on symmetric {spaces.~III}},
     journal = {Izvestiya. Mathematics },
     pages = {165--200},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a7/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - Invariant subspaces in some function spaces on symmetric spaces.~III
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 165
EP  - 200
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a7/
LA  - en
ID  - IM2_2002_66_1_a7
ER  - 
%0 Journal Article
%A S. S. Platonov
%T Invariant subspaces in some function spaces on symmetric spaces.~III
%J Izvestiya. Mathematics 
%D 2002
%P 165-200
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a7/
%G en
%F IM2_2002_66_1_a7
S. S. Platonov. Invariant subspaces in some function spaces on symmetric spaces.~III. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 165-200. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a7/