On the order of the best approximation in spaces with asymmetric norm and sign-sensitive weight on classes of differentiable functions
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 103-131

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of asymmetric norms with sign-sensitive weight contains both the classical norms of the spaces $L_p(\mathbb T)$ and the metrics that generate one-sided approximations. For sign-sensitive weights $\varrho$$\tilde\varrho$ and an asymmetric monotone norm $\psi(u,v)$ on the plane, we obtain an upper estimate for the number $$ E_n(\mathrm{B}\mathrm{W}_{\psi_{\boldsymbol{\varrho},\mathbf{p}}}^r(\mathbb T),L_{\psi_{\tilde{\boldsymbol{\varrho}},\mathbf{q}}}(\mathbb T))=\sup_{f\in\mathrm{B}\mathrm{W}_{\psi_{\boldsymbol{\varrho},\mathbf{p}}}^r(\mathbb T)}\inf_{t\in T_n}\psi_{\tilde{\boldsymbol{\varrho}},\mathbf{q}}(f(\,\cdot\,)-t(\,\cdot\,)). $$ In some important cases of asymmetric norms with fixed sign-sensitive weights $\varrho=(\alpha,\beta)$, we find the rate of decrease of this number as $n\to+\infty$ for a fixed $r\in\mathbb N$.
@article{IM2_2002_66_1_a4,
     author = {A. I. Kozko},
     title = {On the order of the best approximation in spaces with asymmetric norm and sign-sensitive weight on classes of differentiable functions},
     journal = {Izvestiya. Mathematics },
     pages = {103--131},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a4/}
}
TY  - JOUR
AU  - A. I. Kozko
TI  - On the order of the best approximation in spaces with asymmetric norm and sign-sensitive weight on classes of differentiable functions
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 103
EP  - 131
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a4/
LA  - en
ID  - IM2_2002_66_1_a4
ER  - 
%0 Journal Article
%A A. I. Kozko
%T On the order of the best approximation in spaces with asymmetric norm and sign-sensitive weight on classes of differentiable functions
%J Izvestiya. Mathematics 
%D 2002
%P 103-131
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a4/
%G en
%F IM2_2002_66_1_a4
A. I. Kozko. On the order of the best approximation in spaces with asymmetric norm and sign-sensitive weight on classes of differentiable functions. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 103-131. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a4/