On orthorecursive expansion by a~certain function system
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 59-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The extension of Parseval's theorem given in [2] is interpreted from the viewpoint of expansion systems. To do this, we present the definition and basic properties of orthorecursive expansion systems (introduced by Lukashenko) and prove the equivalence of Stechkins' result and the convergence of the expansion by a certain system (the signum system) of any element in $L^2[0,1]$ to this element. The approach adopted enables us to study questions of uniform convergence, pointwise convergence and convergence in the $L^p$ metrics of expansions by the signum system of functions not only in $L^2 [0,1]$, but also in $L^p(X,\Xi,\mu)$, where $(X,\Xi,\mu)$ is an arbitrary measurable space with a finite measure. We prove the convergence in the $L^p$ metric of the expansion of any $L^p$ function, $1\leqslant p\leqslant\infty$, the uniform convergence of the expansion of any continuous function and the pointwise convergence of the expansion of any essentially unbounded function by the signum system to this function.
@article{IM2_2002_66_1_a2,
     author = {V. V. Galatenko},
     title = {On orthorecursive expansion by a~certain function system},
     journal = {Izvestiya. Mathematics },
     pages = {59--70},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a2/}
}
TY  - JOUR
AU  - V. V. Galatenko
TI  - On orthorecursive expansion by a~certain function system
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 59
EP  - 70
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a2/
LA  - en
ID  - IM2_2002_66_1_a2
ER  - 
%0 Journal Article
%A V. V. Galatenko
%T On orthorecursive expansion by a~certain function system
%J Izvestiya. Mathematics 
%D 2002
%P 59-70
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a2/
%G en
%F IM2_2002_66_1_a2
V. V. Galatenko. On orthorecursive expansion by a~certain function system. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 59-70. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a2/

[1] Stechkin S. B., Izbrannye trudy: matematika, Fizmatlit, M., 1998 | MR | Zbl

[2] Stechkin B. S., Stechkin S. B., “Srednee kvadraticheskoe i srednee arifmeticheskoe”, Dokl. AN SSSR, 137:2 (1961), 287–290 | MR | Zbl

[3] Lukashenko T. P., “O svoistvakh ortorekursivnykh razlozhenii po neortogonalnym sistemam”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2001, no. 1, 6–10 | MR | Zbl

[4] Lukashenko T. P., “Ob ortorekursivnykh razlozheniyakh po sisteme Fabera–Shaudera”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokladov 10-i Saratovskoi zimnei shkoly, Izd-vo Saratovskogo universiteta, Saratov, 2000, 83

[5] Jones L., “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training”, Ann. Statist., 1992, no. 20, 608–613 | DOI | MR | Zbl

[6] Temlyakov V. N., “Weak greedy algorithms”, Advances in Computational Mathematics, 2000, no. 12, 213–227 | DOI | MR | Zbl